Electrical Power & Protection


Mesh networks: a multidirectional electrical superhighway

April 2024 Electrical Power & Protection


Nishandra Baijnath, systems architect, Power Systems, Anglophone Africa at Schneider Electric.

Today, many power industry stakeholders are faced with mounting requirements for improved grid reliability, resilience and distribution efficiency. It is a challenge which requires power service providers to rethink their infrastructure. Enter mesh networks, which can overcome the limitations of traditional star networks (also known as Y networks), providing the best of both radial feeder and ringed topologies to offer redundancy, flexibility and robustness in power distribution.

Distribution 101

To understand both the relevance and value of mesh networks for electrical distribution, we need to take one step back, unpacking both radial feeders and ringed topologies.

A radial feeder system is a type of electrical distribution system where power flows unidirectionally from a single source, such as a substation, to multiple loads, like consumers. Imagine a tree; its source is the root, and the branches represent the feeder lines that supply power to various endpoints. Due to a radial feeder’s unidirectional nature, there is only one path, which means if there is a fault or interruption, all downstream loads are affected.

On the other hand, a ringed topology is a type of electrical distribution system where there are two feeders or more forming a closed loop or ring. Unlike the radial feeder, a ringed topology provides two paths for power flow. If one feeder fails, the network can be reconfigured so other feeders can still supply power to the loads. Ringed topology is therefore less susceptible to outages. A fault on one part of the ring will not affect the entire system.

Mesh networks, unlike a radial feeder or ringed topology, enables multiple power flow, which can then include traditional grid power generation and distributed energy resources (DERs) from renewables.

A mesh network therefore allows for:

• Multiple sources: these can be generators, substations, battery energy storage systems or renewable energy installations.

• Multiple loads: there can be multiple loads (consumers) connected to the network. These loads could be residential, commercial or industrial.

• Redundancy and flexibility: this is a major differentiator. Should one source fail or a fault occurs, the system can reconfigure itself by rerouting power through alternative paths.

• Isolation and restoration: when a fault such as a short circuit occurs, the network employs techniques like fault location isolation and service restoration (commonly known as FLISR).

Isolation for continuous operations

This fault detection truly sets mesh networks apart. In a typical scenario, the system will detect the fault, which could be a broken conductor or other equipment failure.

It will then isolate this fault by, for example, opening a switch or a breaker at a specific location, which will disconnect the faulty section. The loads, which were initially supplied by the faulted section, are redirected to other available sources. These alternate sources ensure continuity of power supply.

Once the fault is repaired, the system closes the switch or breaker, restoring the original configuration. Mesh networks therefore offer:

• Resilience: mesh networks are highly resilient because they can adapt dynamically to faults.

• Minimised outages: even during faults, most loads remain powered due to alternative paths.

• Efficient utilisation: energy flows through the most efficient paths, minimising losses.

• Scalability: mesh networks can accommodate additional sources and loads as needed.

At Schneider Electric, our EcoStruxure Microgrid Advisor IoT platform optimises the operations of mesh networks and other DERs by leveraging predictive algorithms and real-time data, while enhancing performance, optimising energy usage, and supporting energy security.

This real-time optimisation is achieved through weather data subscription, which allows for 24-hour advance forecasting on what renewable energy production is expected. Furthermore, when the scheduled grid outage period is added, the machine learning algorithms will determine the best way to manage the available energy resources in addition to enhancing the load management based on expected available energy.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Schneider Electric appoints Canninah Dladla as cluster president for English-speaking Africa
Schneider Electric South Africa News
Schneider Electric has appointed Canninah Dladla as its new cluster president for Anglophone Africa.

Read more...
Addressing the cooling needs of the modern data centre
Schneider Electric South Africa IT in Manufacturing
The rise in hardware density in data centres is gaining speed and is largely driven by the demands of artificial intelligence and machine learning, requiring more powerful servers and specialised hardware.

Read more...
Boiler selection for optimal thermal energy performance
Electrical Power & Protection
The changing world of boilers means companies wishing to improve their thermal energy efficiencies while containing costs and environmental impacts must make careful and informed decisions. AES’s rich pool of experience, ability to keep pace with new steam trends and technologies, and understanding of their clients’ production processes can assist clients to weigh up different options in a careful and informed manner.

Read more...
Securing Africa’s energy future starts at home
ACTOM Electrical Machines Electrical Power & Protection
Africa’s energy demands are surging, but the current reliance on imported solar technology leaves the continent vulnerable. This is why the prospect of building inverters and lithium batteries locally, designed for South Africa’s specific needs, is so promising.

Read more...
Dry-type transformers for Dutch intake substation
Electrical Power & Protection
A data centre in the Netherlands is the site of a recent innovation on the transformer landscape, where TMC Transformers has designed, manufactured and installed dry-type transformers in a large intake substation.

Read more...
Automation, is it 2049 already?
Schneider Electric South Africa IT in Manufacturing
It would come as no surprise that AI and ML are at the forefront of the increased efficiency movement, and are vital cogs in this sophisticated automated machine. A development that is extremely exciting, is autonomous systems.

Read more...
Generators: The muscle in the new energy mix
WEG Africa Electrical Power & Protection
Contrary to their reputation as noisy and dirty, generators are a key part of modern energy supplies. Generators are reliable electricity workhorses in times of need. But they are also becoming welcome additions to modern energy mixes through efficiency improvements, noise reduction and flexible design choices.

Read more...
Doubling down on sustainability commitments: six practical solutions to meet the AI challenge
Schneider Electric South Africa Electrical Power & Protection
The best time to plant a tree, the old saying goes, was 20 years ago, and the second-best time is today. The same concept holds true to sustainability in the data centre industry.

Read more...
Condition-based maintenance can revolutionise business continuity
Schneider Electric South Africa Electrical Power & Protection
As businesses experience growing pressure to enhance operational efficiency and reduce downtime due to electrical failure, condition-based maintenance becomes essential for preventing unforeseen equipment breakdowns by assessing the real-time health of electrical systems.

Read more...
Ball valves and actuators to optimise HVAC performance
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric South Africa offers the full range of innovative SpaceLogic and EasyLogic ball valves and actuators. These cutting-edge products are designed to optimise HVAC system performance, ensuring comfort and energy efficiency in industrial, commercial and residential buildings.

Read more...