Electrical Power & Protection


Mesh networks: a multidirectional electrical superhighway

April 2024 Electrical Power & Protection


Nishandra Baijnath, systems architect, Power Systems, Anglophone Africa at Schneider Electric.

Today, many power industry stakeholders are faced with mounting requirements for improved grid reliability, resilience and distribution efficiency. It is a challenge which requires power service providers to rethink their infrastructure. Enter mesh networks, which can overcome the limitations of traditional star networks (also known as Y networks), providing the best of both radial feeder and ringed topologies to offer redundancy, flexibility and robustness in power distribution.

Distribution 101

To understand both the relevance and value of mesh networks for electrical distribution, we need to take one step back, unpacking both radial feeders and ringed topologies.

A radial feeder system is a type of electrical distribution system where power flows unidirectionally from a single source, such as a substation, to multiple loads, like consumers. Imagine a tree; its source is the root, and the branches represent the feeder lines that supply power to various endpoints. Due to a radial feeder’s unidirectional nature, there is only one path, which means if there is a fault or interruption, all downstream loads are affected.

On the other hand, a ringed topology is a type of electrical distribution system where there are two feeders or more forming a closed loop or ring. Unlike the radial feeder, a ringed topology provides two paths for power flow. If one feeder fails, the network can be reconfigured so other feeders can still supply power to the loads. Ringed topology is therefore less susceptible to outages. A fault on one part of the ring will not affect the entire system.

Mesh networks, unlike a radial feeder or ringed topology, enables multiple power flow, which can then include traditional grid power generation and distributed energy resources (DERs) from renewables.

A mesh network therefore allows for:

• Multiple sources: these can be generators, substations, battery energy storage systems or renewable energy installations.

• Multiple loads: there can be multiple loads (consumers) connected to the network. These loads could be residential, commercial or industrial.

• Redundancy and flexibility: this is a major differentiator. Should one source fail or a fault occurs, the system can reconfigure itself by rerouting power through alternative paths.

• Isolation and restoration: when a fault such as a short circuit occurs, the network employs techniques like fault location isolation and service restoration (commonly known as FLISR).

Isolation for continuous operations

This fault detection truly sets mesh networks apart. In a typical scenario, the system will detect the fault, which could be a broken conductor or other equipment failure.

It will then isolate this fault by, for example, opening a switch or a breaker at a specific location, which will disconnect the faulty section. The loads, which were initially supplied by the faulted section, are redirected to other available sources. These alternate sources ensure continuity of power supply.

Once the fault is repaired, the system closes the switch or breaker, restoring the original configuration. Mesh networks therefore offer:

• Resilience: mesh networks are highly resilient because they can adapt dynamically to faults.

• Minimised outages: even during faults, most loads remain powered due to alternative paths.

• Efficient utilisation: energy flows through the most efficient paths, minimising losses.

• Scalability: mesh networks can accommodate additional sources and loads as needed.

At Schneider Electric, our EcoStruxure Microgrid Advisor IoT platform optimises the operations of mesh networks and other DERs by leveraging predictive algorithms and real-time data, while enhancing performance, optimising energy usage, and supporting energy security.

This real-time optimisation is achieved through weather data subscription, which allows for 24-hour advance forecasting on what renewable energy production is expected. Furthermore, when the scheduled grid outage period is added, the machine learning algorithms will determine the best way to manage the available energy resources in addition to enhancing the load management based on expected available energy.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Rail electrification and EV solutions for integrated transport systems
Electrical Power & Protection
A comprehensive range of solutions for rail electrification and electric vehicles is available from leading technology provider ABB, contributing significantly to integrated and sustainable transport systems.

Read more...
PPS delivers containerised distribution board for Western Cape hybrid power project
Electrical Power & Protection
South African electrical enclosure specialist Power Process Systems has successfully completed the design, fabrication and commissioning of a 4000 A containerised distribution board for a wind/PV solar hybrid renewable energy project on a site in the Western Cape.

Read more...
The choice of a thermal carrier is critical for optimal processing
Electrical Power & Protection
Historically steam, fuelled by coal, has been the most prevalent thermal carrier in South African industry. However, times are changing, with the manufacturing and processing sector needing to review the energy reticulation systems and thermal carriers currently in use.

Read more...
ABB’s blueprint for a net zero future
Electrical Power & Protection
ABB’s Mission to Zero is a strategic initiative aimed at achieving a sustainable future characterised by zero emissions, zero accidents and zero waste.

Read more...
Hybrid DCS for an evolving industrial landscape
Schneider Electric South Africa PLCs, DCSs & Controllers
Today’s industrial automation continues to evolve at a blistering speed, which means traditional DCSs have to keep up to ensure continuous integration into modern, digital infrastructure.

Read more...
How South Africa’s transformer manufacturing industry can fill a gaping infrastructure gap
ACTOM Electrical Machines Electrical Power & Protection
South Africa’s energy transition is accelerating the demand for power transformers. However, this shift toward renewable energy is exposing a critical infrastructure gap: a severe shortage of transformers.

Read more...
General-purpose 350 W AC-DC power supply
Electrical Power & Protection
The TDK-Lambda GUS350 series of compact single-output general-purpose power supplies addresses the need for an economically priced product while maintaining reliability and quality.

Read more...
Ground-breaking battery tester
Comtest Electrical Power & Protection
Midtronics offers the proven MVT handheld battery tester. This revolutionary tool, powered by MDX-AI, is set to redefine the standards of battery diagnostics and testing in the automotive industry.

Read more...
Why industry should enter the world of operator training simulators
Schneider Electric South Africa IT in Manufacturing
System-agnostic operator training simulator (OTS) software is a somewhat unsung hero of industry that trains plant operators in a virtual world that mirrors real-world operations. The benefits are multiple.

Read more...
Green hydrogen could be the missing link in powering the future of technology
Electrical Power & Protection
Green hydrogen has numerous applications across multiple industries. It also has the potential to provide a clean energy source to power future technology, with far-reaching implications for both industry and society.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved