Analytical Instrumentation & Environmental Monitoring


Keeping an eye on invisible radiation

August 2024 Analytical Instrumentation & Environmental Monitoring

At its peak in 1994, the energy generation capacity of the UK’s nuclear power stations was 12,7 GW across 16 plants. In 2024, the capacity has fallen to around 5 GW, and the number of stations is down to nine. However, this is far from the end of the story, as spent nuclear fuel remains radioactive for centuries and requires rigorous safety processes to safeguard against leaks. Gary Bradshaw, a director of radiological surveillance specialist Omniflex, explains the essential role of effective radiological monitoring in nuclear decommissioning.

Nuclear power stations have a service lifetime of 40 to 60 years, but their stories extend beyond this. After the generation period, by which time the reactor and safety systems are approaching obsolescence, plant operators must dismantle them with extreme care. If all goes according to plan, the former station site will remain unusable for at least 50 years.

Decommissioning usually follows this sequence: first technicians remotely remove the highly-irradiated, spent fuel from the reactor core and place it in a steel-lined cell to be safely released from its housing. Robots then segment the reactor and fuel assemblies, chopping it into pieces, before an assay system checks the radiation levels and categorises the materials as low level, intermediate, or still reactive.

The dismantled reactor materials are then encapsulated in lead-shielded steel drums and sent to nuclear storage repositories like those found at the Sellafield nuclear site, which is the centre of British nuclear treatment and disposal, where they will be stored for hundreds of years.

Clearly, radiological monitoring plays a crucial role through every stage of the nuclear timeline because the threat of alpha, beta and gamma radiation leaks is great, even from spent reactor material. It is crucial that nuclear sites deploy proper radiation monitoring technology in both active plant areas and nuclear waste storage facilities to ensure ongoing plant safety. In the event of a leak, radiological monitoring systems enable operators to identify them and respond as quickly as possible, minimising any operational disruptions and safety risks.

Networked radiological monitoring

The Health and Safety Executive (HSE) Office of Nuclear Regulators and the Nuclear Decomissioning Authority (NDA) set strict guidelines for live and historical radiological level monitoring. However, site managers face challenges in networking all their alarms because many of the systems are decades old, and face obsolescence challenges, which are primarily caused by the original manufacturers no longer being in business.

When the National Nuclear Laboratory (NNL) needed to install 130 data collection points to connect radiation protection instrumentation across Sellafield’s site, it was not feasible to use traditional networking solutions. It would have taken months to complete, and would have incurred significant cabling and installation costs.

To overcome these challenges, Omniflex designed the RPN1 radiation monitor interface device in partnership with Steve Parkin, senior project manager for NNL. The RPN1 is a gateway device that simplifies data collection from radiation monitors and connects them to the plant’s top-end scada system. It is a commercial off-the-shelf product that can be installed in minutes, saving thousands of manhours of installation work, and eliminates the need to install kilometres of expensive cabling.

The innovation of the RPN1 helped NNL save over £1m in project costs, reduced the time operators spend in active plant areas, and significantly accelerated the project delivery time. Furthermore, the engineering of the RPN1 led to Omniflex winning an NDA Innovation Award.

Decommissioning nuclear stations is a centuries-long process that requires robust radiation monitoring measures for the duration. Without the proper implementation of radiological monitoring instrumentation with clear and transparent data analysis capabilities, potential catastrophic incidents are bound to occur.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Upgrading an outdated alarm monitoring system
Omniflex Remote Monitoring Specialists Industrial Wireless
Legacy alarm replacement specialist, Omniflex has successfully upgraded Guernsey Electricity’s MPAS90 alarm annunciator systems, which were first installed decades ago and are obsolete.

Read more...
Cathodic protection design considerations that influence ESG outcomes
Omniflex Remote Monitoring Specialists Electrical Power & Protection
Major infrastructure like wharves, bridges, pipelines and tanks are at constant risk of corrosion. David Celine, managing director of cathodic protection specialist Omniflex, explains how CP system design can support ESG commitments, while simultaneously lowering costs and improving maintenance capabilities.

Read more...
Precision in every drop, powered by ICP technology
Wearcheck Analytical Instrumentation & Environmental Monitoring
Elemental profiling using Inductively Coupled Plasma – Optical Emission spectroscopy provides useful information on the chemical composition of lubricants.

Read more...
Upgrading obsolete rack-based alarms
Omniflex Remote Monitoring Specialists Industrial Wireless
Legacy alarm replacement specialist, Omniflex has supported a major oil and gas company in Qatar by upgrading the obsolete MPAS 90 alarm systems at one of its major plants in the country.

Read more...
Becoming a leader in alarm annunciators
Omniflex Remote Monitoring Specialists SCADA/HMI
The rise of the digital age and PC-based systems and graphical interfaces led many to view the traditional annunciator market as obsolete. Omniflex explains how the company saw the market differently to then established players like Highland and Rochester, and how it reshaped the industry.

Read more...
A trusted oxygen analyser back in action
Elemental Analytics Analytical Instrumentation & Environmental Monitoring
After a period of discontinuation, Servomex’s Oxy 1810 oxygen analyser has officially returned.

Read more...
Multi-channel pH and conductivity controller for the water sector
Senseca Analytical Instrumentation & Environmental Monitoring
The measurement of pH and conductivity plays an integral role in water systems. Senseca South Africa has introduced a multi-channel controller that allows the connection of up to five digital sensors and a frequency-emitting flow sensor.

Read more...
DEKRA Industrial sets new standards for asset integrity in local petrochemical sector
Analytical Instrumentation & Environmental Monitoring
DEKRA Industrial South Africa has strengthened its position as a leader in hydrogen-induced cracking inspections through a strategic combination of advanced non-destructive testing techniques, investment in state-of-the-art inspection equipment and global technical collaboration.

Read more...
ABB leads in emissions monitoring with industry-first data acquisition system proficiency test
ABB South Africa Analytical Instrumentation & Environmental Monitoring
ABB is the first company to offer a complete package of continuous gas analysis and DAHS systems fully compliant with international standards.

Read more...
Ensuring clean and safe water
Endress+Hauser South Africa Editor's Choice Analytical Instrumentation & Environmental Monitoring
Endress+Hauser’s comprehensive range of disinfection sensors is designed to monitor and control disinfectant levels in water treatment processes.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved