IT in Manufacturing


How far can ML and AI go in food & beverage?

November 2023 IT in Manufacturing

Artificial intelligence (AI) has hit the headlines recently, with a great deal of media coverage dedicated to how ChatGPT and similar technologies are making their mark on our everyday lives. With all this attention, you could be forgiven for thinking that AI is a new technology. In fact, AI can date its origins back to the 1950s. What we are actually seeing today are the results of decades of research and technological developments; they just all seem to be coming to mainstream fruition now, making a real difference to how we live and work.

When it comes to the food and beverage sector, things are no different, and more businesses are reaping the benefits of AI technologies. With the value of the market for AI in the food and beverage sector expected to reach a staggering $30 billion by 2028, the number of food and beverage businesses investing in AI is clearly predicted to increase. But while many in the industry have heard of AI, there is still widespread uncertainty about what it actually is, how it works and how it can benefit the food and beverage sector.

What is AI? What is machine learning (ML)?

AI is the ability of a computer or machine to mimic or imitate human intelligent behaviour and perform human-like tasks. It performs tasks that require human intelligence such as thinking, reasoning, learning from experience, and making its own decisions. ML is a subset of AI. It involves computer systems that can learn and adapt without being explicitly programmed or helped. ML uses algorithms and statistical models to analyse data intelligently, drawing inferences from data patterns to inform further action.

Where does AI fit into the food and beverage sector?

AI has the potential to optimise all areas of food manufacturing. It can facilitate smart, industry-specific applications to improve every aspect of the supply chain from farm to fork, helping to build agile supply chains and drive revenue growth. With its ability to factor in an inordinate number of data values, parameters, what-if scenarios and other contributing factors, ML can produce accurate and timely recommendations for almost every aspect of the food supply chain. Ultimately, this provides a competitive advantage that would be impossible to replicate without the application of AI technologies.

Where is ML being used already?

The uses of ML for the food and beverage sector are seemingly limitless. Take precision farming for example, an area where it is delivering new depths of insight. An example is the analysis of past harvests in terms of both quantity and quality, in combination with weather forecasts to inform which fields need watering and when to use fertiliser.

In the aquaculture sector leading animal nutrition company, Nutreco has achieved additional production cycles and healthier shrimps, while at the same time using 30% less feed. The business uses audio sensors in aquaculture to ‘listen’ to the shrimps, understanding when they are hungry. ML then determines when and how much the shrimps must be fed, which lowers the feed conversion ratio and shortens the shrimp production cycle, doubling production without huge intensification.

Another example of ML in action is at a global bakery ingredients business, Zeelandia. The business has addressed the challenges of higher costs and lack of available bakery ingredients by deploying an ML model that recommends products and prices to be offered to their bakery customers based on what similar customers are buying. Through the implementation of applied AI, the group has achieved an 83% faster time to prepare product recommendations for customers, cutting the time down from 30 minutes to five minutes. As a result of product recommendations taking less time, Zeelandia employees are able to provide a better customer experience. In addition to increased revenue per transaction and share of wallet per customer, the company is improving the accuracy and speed of product recommendations and pricing strategies.

We are seeing more food and beverage organisations turning towards AI to help reduce waste and identify inefficiencies within the supply chain. Leading global provider of goat and organic cow cheese, Amalthea, is using ML to make the cheese quality more predictable and to maximise yield, building customer loyalty and boosting sustainability. Previously Amalthea could only manually analyse milk yield on a weekly basis, which made it difficult to adjust the process parameters to optimise the yield. By leaning on ML, Amalthea can now view the yields immediately, in addition to receiving direct insight into what is causing a yield change. This has helped Amalthea to reduce its overall waste from manufacturing, as the company can quickly identify pain points and improve processes simultaneously. These changes have had a direct impact on the company’s profitability and bottom line. For every 1% increase in yield, Amalthea expects to save approximately €500 000.

Planning for all eventualities

Nowadays, food businesses could be forgiven for thinking that the only thing that they can be certain of is uncertainty itself. With more unpredictable variations in weather conditions, what about the role of ML where there are potentially no data patterns to be found? What ML can do is help understand the risks of changing weather conditions better, and how they can impact harvests globally. It is this increased understanding that can inform the strategies needed to mitigate these risks. But ensuring these strategies are effective requires consensus. As the UN’s Food and Agriculture Organisation (FAO) points out, every party involved in the food supply chain needs to become more resilient, minimising the use of water, energy and other resources. These are all changes that can be underpinned by ML.

As technology develops and as more businesses discover the benefits that can be realised with the application of AI, so AI capabilities will develop further, and be refined to solve specific industry or business problems. As we are seeing already, the considered application of AI technologies is helping businesses right across the food and beverage industry supply chain, and this is set to increase over the next few years. AI is already proving to be a driver of real efficiencies, and is helping businesses to plan for all eventualities, delivering the actionable insight needed to stay a step ahead at all times.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Why choose between Capex and Opex if you can Totex?
Schneider Electric South Africa IT in Manufacturing
In a sector marked by cyclical demand, high capital intensity, and increasing regulatory and sustainability pressures, mining, minerals and metals (MMM) companies are re-evaluating how they approach procurement and investment.

Read more...
AI and the smart factory
Schneider Electric South Africa IT in Manufacturing
Imagine walking into a factory where machines can think ahead, predict problems before they happen and automatically make adjustments to realise peak performance. This isn’t science fiction, it’s happening right now as AI continues to transform how we run industrial operations.

Read more...
Why your supply chain should be a competitive advantage
Schneider Electric South Africa IT in Manufacturing
The last five years have placed unprecedented strain on global supply chains. Leading companies are turning the challenge into an opportunity to transform their supply chains into a competitive advantage.

Read more...
Why AI will never truly understand machines
Wearcheck IT in Manufacturing
Cutting-edge technology and solutions powered by AI are embraced by specialist condition monitoring company, WearCheck, where the extreme accuracy of data used to assess and diagnose machine health is paramount.

Read more...
Buildings and microgrids for a greener future
Schneider Electric South Africa IT in Manufacturing
Buildings are no longer passive consumers of power. Structures of almost every size are evolving into dynamic energy ecosystems capable of generating, storing and distributing their own electricity. Forming part of this exciting transformation are microgrids.

Read more...
Traditional data centres are not fit for purpose
IT in Manufacturing
Traditional data centre designs are falling short, with nearly half of IT leaders admitting their current infrastructure does not support energy or carbon-reduction goals. New research commissioned by Lenovo reveals that data centre design must evolve to future-proof businesses.

Read more...
AI agents for digital environment management in SA
IT in Manufacturing
The conversation about artificial intelligence in South Africa has shifted rapidly over the past year. Among the technologies changing the pace of business are AI agents - autonomous, task-driven systems designed to operate with limited human input.

Read more...
AI-powered maintenance in future-ready data centres
Schneider Electric South Africa IT in Manufacturing
The data centre marketplace often still relies on outdated maintenance methods to manage mission-critical equipment. Condition-Based Maintenance (CBM) is powered by AI and is fast becoming a necessity in ensuring both competitiveness and resilience.

Read more...
Powering up data centre mega development
IT in Manufacturing
Parker Hannifin has secured a major contract to supply key equipment for nearly 30 aeroderivative gas turbines powering a new hyperscale data centre in Texas.

Read more...
Building resilient supply chains through smarter e-procurement
RS South Africa IT in Manufacturing
In a time of constant disruption, from supply chain uncertainty to rising operational costs, businesses that embrace digital procurement are better positioned to stay competitive and resilient.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved