Electrical Power & Protection


Commissioning a solar power system for maximum performance

March 2023 Electrical Power & Protection

Even with great engineering, no system is failproof. That’s where commissioning comes in, establishing a baseline of performance for customer acceptance and follow-on maintenance. Commissioning is important not only for photovoltaic (PV) system performance, but also for the longevity of equipment, safety, ROI, and warranties. Fluke is experiencing increasing demand for high-precision handheld devices which can measure photovoltaic (PV) systems. This is the procedure.

Step 1: Photovoltaic system design and production

To find the expected production at the site, determine the solar resource and take into account any shading that may occur on the panels. The solar resource is measured in peak sun hours, which is the number of hours the installation achieves 1000 W/m2 per day. If the solar resource is good this will be 6000 W/m2 or six peak sun hours.

The Fluke IRR-1 solar irradiance meter can be used to determine the actual solar irradiance (W/m2) and shading at the site to develop a baseline. Let’s say it’s a 10 kW PV array. Calculate the expected annual production by multiplying the 10 kW array x six peak sun hours x 365 days per year x 0,85 (15% derating due to power losses in wiring and inverter). This array should produce 18 615 kWh of energy per year, or 51 kWh per day.

Step 2: Measuring PV performance

Once the system is installed, make sure it’s operating as designed by measuring its electrical characteristics and the actual power output of the array. The performance of a PV array is based on its current-voltage (IV) curve. Not only does an inverter convert DC to AC, but it also maximises its power output by capturing the current and voltage at which the string is producing the most power, since power is voltage x current. The short circuit current (Isc) is the maximum current from a cell, and no power will be produced because there is no voltage difference; the positive and negative wires are touching. The open circuit voltage (Voc) is the maximum voltage from a cell. No power will be produced because the circuit is open. The point at which the module produces the most power is called the maximum power point (mpp).

To know if an array is working as designed, know the values of the Voc and Isc, listed on the module datasheet. Measure the Voc and Isc before and after installation.

Voc is measured by using the Fluke 393 FC CAT III solar clamp to determine the voltage between the positive and negative terminals. The 393 FC is CAT III 1500 V/CAT IV 600V rated, making it safe and reliable for making measurements in CAT III environments like solar installations. Use the Fluke 64 MAX IR thermometer to determine the temperature of the module to account for the effect of temperature on Voc (the lower the temperature, the higher the voltage and vice versa). The 393 FC provides audio polarity warning while testing Voc. If it’s reversed, the combiner box or other circuits may be unintentionally connected in series, resulting in voltages over the maximum inverter input voltage.

To test Isc, disconnect all parallel circuits, and safely short the circuit. Measure the current between the positive and negative terminals through a multimeter. Set the dial to a current greater than expected. Record the values of Isc and Voc on the Fluke Connect app and save them for trending and reporting

Check the insulation resistance of your conductors, the connections between modules and between modules and racking, and your resistance to ground. Use the Fluke 1625-2 FC earth ground tester to measure earth ground resistance to ensure a resistance of less than 25 ohms.

Step 3: Diagnosing variances

Even when installed correctly, a PV system may not meet the expected electrical production. It’s very important for a module to have the electrical characteristics specified, because an inverter has a minimum and maximum input current, below and above which it will have no power output.

Scenario 1: Open circuit voltage or short circuit current is higher or lower than on the datasheet

In this case, the string has one or more modules whose characteristics don’t meet specification. Open circuit voltage out of range means the inverter may not output power. Short circuit current out of range indicates there may have a module mismatch, which can severely degrade the array’s performance because the current of a string is limited by the module with the lowest current. Identify and replace the modules.

Scenario 2: Power output is low

If the power output is lower than expected, there may be a problem. While some fluctuation in output is expected, consistently less than predicted output could be a sign of a faulty string, a ground fault, or shading. One reason could be hot spots − the accumulation of current and heat on a short-circuited cell, leading to reduced performance and possible fire. Thermal imagers like the Fluke Ti480 PRO infrared camera or the Fluke TiS75+ thermal camera can quickly identify hot spots.

Ground faults are another reason, but they’re harder to diagnose and require testing the voltage and current of each conductor and the equipment grounding conductor (EGC), which carries stray current to the ground. Voltage and current on the EGC indicate a ground fault. Ground faults can occur due to damaged conductor insulation, improper installation, pinched wires and water, which can create an electrical connection between a conductor and the EGC. Find the source of the problem and replace the damaged wires or improve the conditions.

Other reasons for low power output could be shading, and poor tilt and compass direction (azimuth angle) for the location. Use a solar pathfinder to find any new sources of shading and remove them if possible. While it may not be feasible to change the tilt and compass direction of the array to point the panels more directly toward the sun, you should know the tilt and azimuth angles to establish a baseline for future reference.

In large-scale PV systems, the power from a solar system goes through transformers after being inverted to step up the voltage, then to switchgear and medium voltage cables, where decreased insulation resistance is a common issue. For medium and high voltage cables, use the Fluke 1555C FC 10 kV insulation tester, which can test up to 10 000 V. For systems with batteries, compare the expected battery voltage and state of charge with the actual using the Fluke 500 Series battery analyser.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Boiler selection for optimal thermal energy performance
Electrical Power & Protection
The changing world of boilers means companies wishing to improve their thermal energy efficiencies while containing costs and environmental impacts must make careful and informed decisions. AES’s rich pool of experience, ability to keep pace with new steam trends and technologies, and understanding of their clients’ production processes can assist clients to weigh up different options in a careful and informed manner.

Read more...
Securing Africa’s energy future starts at home
ACTOM Electrical Machines Electrical Power & Protection
Africa’s energy demands are surging, but the current reliance on imported solar technology leaves the continent vulnerable. This is why the prospect of building inverters and lithium batteries locally, designed for South Africa’s specific needs, is so promising.

Read more...
Dry-type transformers for Dutch intake substation
Electrical Power & Protection
A data centre in the Netherlands is the site of a recent innovation on the transformer landscape, where TMC Transformers has designed, manufactured and installed dry-type transformers in a large intake substation.

Read more...
Generators: The muscle in the new energy mix
WEG Africa Electrical Power & Protection
Contrary to their reputation as noisy and dirty, generators are a key part of modern energy supplies. Generators are reliable electricity workhorses in times of need. But they are also becoming welcome additions to modern energy mixes through efficiency improvements, noise reduction and flexible design choices.

Read more...
Doubling down on sustainability commitments: six practical solutions to meet the AI challenge
Schneider Electric South Africa Electrical Power & Protection
The best time to plant a tree, the old saying goes, was 20 years ago, and the second-best time is today. The same concept holds true to sustainability in the data centre industry.

Read more...
Industrial acoustic imaging tool
Comtest Pneumatics & Hydraulics
Comtest offers the Fluke ii Industrial Acoustic Imager series, a hand-held, easy-to-use tool that visualises sounds coming from small leaks in compressed air, gas and vacuum systems.

Read more...
Condition-based maintenance can revolutionise business continuity
Schneider Electric South Africa Electrical Power & Protection
As businesses experience growing pressure to enhance operational efficiency and reduce downtime due to electrical failure, condition-based maintenance becomes essential for preventing unforeseen equipment breakdowns by assessing the real-time health of electrical systems.

Read more...
Ball valves and actuators to optimise HVAC performance
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric South Africa offers the full range of innovative SpaceLogic and EasyLogic ball valves and actuators. These cutting-edge products are designed to optimise HVAC system performance, ensuring comfort and energy efficiency in industrial, commercial and residential buildings.

Read more...
Power over Internet splitter for reliable power distribution
Vepac Electronics Electrical Power & Protection
A manufacturing facility requires a stable power supply for its wireless access points mounted across the factory floor. However, these devices do not support direct PoE input. By deploying the IPS-342P PoE Splitter from Vepac, the facility can efficiently convert PoE power from the network switch into 24 V DC output.

Read more...
World’s fastest 16-bit arbitrary waveform generator
Vepac Electronics Electrical Power & Protection
The ARB Rider AWG-5000 is the world’s fastest 16 bit Arbitrary Waveform Generator, with 6,16 GS/s real time update rate (12,32 GS/s in RF mode) and 16 bit vertical resolution.

Read more...