Editor's Choice

Case history 186: Don’t always trust valve position feedback signals

March 2023 Editor's Choice PLCs, DCSs & Controllers

I recently encountered an interesting problem in a minerals recovery processing plant. The loop in question was a gas flow control to a burner and was considered very important for the process temperature control. The operators reported that the loop cycled badly in automatic, and was very difficult to control manually. The C&I technicians had tried all sorts of tunings without any improvement.

They included this loop in a series of optimisation tests we were doing as part of the practical we held after they had finished the classroom part of my basic control course. They said they knew that valve problems often cause problems for control but that this loop had a valve position feedback signal on it and the feedback signal closely followed the controller output signal so they were pretty sure it wasn’t the cause of the problem.

The first test we normally carry out is a Closed Loop As Found test and we recorded how the loop responded to setpoint (SP) changes in automatic with the original existing tuning parameters. However, as reported, the loop cycled badly.

The second test was an Open Loop test where the controller is placed in manual, and various steps are then made on the PD (controller output). Part of this test is shown in Figure 1. Unfortunately we did not record the valve position feedback signal. It can be immediately seen that there was in fact a huge valve problem as the valve was not only apparently sticking in places but also had huge ‘almost hysteresis’ of over 10%. I say ‘almost hysteresis’ because it did move a little on most reversals and then stuck whilst the PD had to move a further 10% before the valve moved again. This was the major reason for the cycling.

The question is why the valve feedback signal followed the PD so closely. The answer is, and this is something every control practitioner should be aware of, valve position feedback signals generally do not track the actual valve position, but track the position of the actuator. Now depending on the type of valve and actuator, there are often various linkages joining the two. In this case the valve was a butterfly valve, which is a rotary valve. The actuator was a spring and diaphragm type which has a linear action. To convert the linear action to a rotary action, manufacturers employ various techniques, typically geartrains. Therefore the hysteresis and/or apparent stickiness may actually be due to play in the linkages.

On the steps where the valve, and hence the flow PV, did follow the PD, we were able to see that there was a slight non-linear installed characteristic in the valve, and we were able to establish the process dynamics to allow us to get good tuning parameters. The original tuning parameters were actually too fast and were contributing to the cycling, so it was not only due to the valve problem, and the tuning was also causing instability.

Final Closed Loop test with the new parameters is shown in Figure 2 and is interesting. On the SP step down it can be seen how the valve started moving and then stuck, and the PD then integrated down well over 10% before the valve could move again and bring the PV back to SP. On the SP step up the valve initially didn’t move at all until the PD had integrated up the same amount, and then it moved to get the PV to SP.

This is another example of how important it is to analyse a loop before tuning and to be aware of the various problems that can exist. As I have said many times in the past, the old adage that tuning can solve all problems is nonsense. I have seen the same problem of slippage in the valve linkages many times in the past, and it somis ething that not many C&I; practitioners seem to be aware of.

About Michael Brown

Michael Brown.

Michael Brown is a specialist in control loop optimisation, with many years of experience in process control instrumentation. His main activities are consulting and teaching practical control loop analysis and optimisation. He now presents courses and performs optimisation over the internet.

His work has taken him to plants all over South Africa and also to other countries. He can be contacted at: Michael Brown Control Engineering CC, +27 82 440 7790


Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

WEG Africa applauds energy standards for motor efficiency
WEG Africa Editor's Choice Electrical Power & Protection
In a country where most electric motors are not energy efficient, the announcement by South Africa’s government of its plans to introduce Minimum Energy Performance Standards is not a day too soon.

World first planetary gearbox customisation
SEW-Eurodrive Editor's Choice Motion Control & Drives
When a mining operation in Mpumalanga found that one of its planetary gearboxes on a high-torque conveyor was failing, it called SEW-EURODRIVE for a solution. Leveraging the latest intelligent technology, the solution was a pioneering innovation providing a cost-effective replacement that will ensure reliable performance.

Thermoforming machine automation
Beckhoff Automation Editor's Choice Motion Control & Drives
Hamer has joined forces with Beckhoff to develop a thermoforming machine for water-based cellulose pulp to produce fully recyclable and environmentally-friendly cellulose packaging.

ABB and Gravitricity to collaborate on energy storage systems
ABB South Africa Editor's Choice News
ABB has signed an agreement with UK-based gravity energy storage firm Gravitricity to explore how hoist expertise and technologies can accelerate the development and implementation of gravity energy storage systems in former mines.

Process instrumentation that delivers
Editor's Choice
The incorporation of Honsberg, Greisinger, Martens, Val.Co and Delta OHM into the Senseca brand has enabled Senseca to expand its research, development and manufacturing operations globally. This has resulted in state-of-the art flow, level and environmental measurement instrumentation that is suitable for applications throughout industry.

Level sensing, conveyor control and grid resistors
DRH Components Editor's Choice Level Measurement & Control
DRH Components is a specialist electric component and systems supplier with a focus on the control of electric motors. As part of its wide variety of products, the company markets the entire Bindicator range. Bindicator manufactures sensors for dry bulk and liquid level measurement.

Greenhouse gas monitoring satellites
ABB South Africa Editor's Choice
ABB has secured a third contract with GHGSat, the global leader in high-resolution greenhouse gas monitoring from space, to manufacture optical sensors for its satellites set to launch into orbit in 2024.

Reminiscences of a life in control
Michael Brown Control Engineering SAIMC
Reminiscences from Michael Brown on a long and rich journey in the world of automation together with SAIMC.

Next-generation hybrid power unit for Formula 1
Siemens South Africa Editor's Choice IT in Manufacturing
Red Bull Ford Powertrains has leveraged the Siemens Xcelerator portfolio of industry software from Siemens Digital Industries Software to develop the next-generation hybrid ICE/electric driven power unit for the 2026 Formula 1 racing season.

Schneider Electric connects to the future
Schneider Electric South Africa Editor's Choice News Electrical Power & Protection
Schneider Electric had a major presence at the recent MESA Africa International Summit, which focused on ‘accelerating the journey to smart manufacturing’. SA Instrumentation & Control’s editor caught up with Dr. Suven M Ramsunder, Digital Transformation Expert, Anglophone Africa, to find out how the company is approaching the integration of artificial intelligence (AI) technologies into the manufacturing industry, both in its own factories and for its customers.