Motion Control & Drives


Managing wear and friction in mini motors

January 2023 Motion Control & Drives

Understanding the impact of friction and wear on a mini motor, as well as the factors that cause them, is a key specification requirement. Technically known as the study of tribology, the effects are always specific to the individual application, and combatting them is critical for durability and long lifetime running. Specifying a mini motor to an application’s tribological requirements will optimise performance long-term and minimise replacement and maintenance costs for the end user.

As miniaturised electrical motor designs include components that physically interact during motion, including brushes and bearings, the impact of friction and wear are key considerations for their specification. Components subject to these types of mechanical stresses typically fail first, meaning that the motor’s lifespan and long-term performance are dependent on these tribological design factors. As the level of friction and wear differs for every application, it is crucial to understand the specific tribology requirements in order to specify the most effective and economical mini motor design.

Electrical brushes

High-speed mini motors involve brushed or brushless technology. DC brush motor designs use armatures that rotate against static brushes to make the electrical connections. The brushes are always used under electrical and mechanical stress, and as a result they wear over time. Brush wear is proportional to the applied spring force and sliding speed. Wear is caused by starting current, continuous current and voltage drop across commutation − the process of conversion of electrical current. High running speeds, typical to many mini motor applications, will also increase the rate of wear. At high speed, the sliding electrical contact can cause mechanical losses, unstable electrical contact and arcing, leading to surface wear. Environmental factors, including temperature and humidity, will also have an effect.

To combat these factors, the construction material and collector coating are key considerations. For example, in high-torque applications, carbon brushes provide increased resistance for longer lasting performance and lifetime. Lubrication types and practices are also important, and to reduce friction, special electrical greases should be used, particularly for high-speed applications.

While brushes wear over time, producing dust and requiring periodic maintenance and replacement, they can be a more cost-effective motor choice. Brush DC motors have a high torque to inertia ratio, and as they require few external components, this reduces potential points of wear and failure. Thus they can be ideal for use in rugged conditions.

Brushless DC motors

Alternatively, brushless DC (BLDC) motor designs remove the challenge of wear. Instead of a brush and mechanical commutator, the motor’s permanent magnet is mounted on the rotor, and motion is generated by the stator’s energising coils. Meanwhile, commutation is performed by an external controller and position sensor. The brushless design means a longer-life motor, with no maintenance requirements, providing high reliability. A BLDC motor can achieve very high speed, and as a result of its commutation sensors, enables precise control and speed regulation. Superior control however requires additional components and complexity, typically making a BLDC motor more expensive than its brush DC counterpart.

Bearings

While BLDC motors are advantageous with regard to physical wear, like brushed DC motors their design still depends on bearings. As a motor’s bearing assembly reduces friction between the rotating shaft and the stationary flange, the bearings themselves absorb wear. As a result, they deteriorate over time. Bearing selection to optimise motor performance and lifetime requires detailed understanding of load pattern and system level deflection. Clearances between the rolling element and possible misalignments caused by loads and fluctuating temperature must also be taken into account.

Optimal lubrication selection maintains performance and enhances lifetime, with different levels of time-dependent thinning used in bearing configurations. Ultimately, hydrodynamic lubricant film selection depends on the balance of factors, including material compatibility, dew point, viscosity parameters, environment and service temperature.

As a result of these factors, bearing design and material selection will ensure lifetime and performance. For example sintered bush bearings deliver lubrication through capillary action between rotating components. They require less maintenance and are relatively low cost for a variety of applications. However, they are less resistant to high speeds and loads, so more robust designs would be preferable.

Design consultancy

Mini motor tribological factors are vital considerations for the performance and lifetime of applications driven by mini motors. Design, materials and lubrication will minimise the effects of friction and wear, and a thorough understanding of the physics involved is important to optimise mini motor specification. Motor design and selection will not only enable the most effective result, but will also minimise long-term costs in replacement and maintenance.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Wedge belts for tough conditions
Bearing Man Group t/a BMG Motion Control & Drives
BMG’s extensive range of Fenner power transmission components encompasses high-performance Fenner Quattro Plus Twin Wrapped (QPTW) wedge belts, that transmit 30% more power than the standard Fenner drivebelts.

Read more...
Quality gearboxes for irrigation
SEW-Eurodrive Editor's Choice Motion Control & Drives
SEW-EURODRIVE is offering a complete gear solution for centre pivot irrigation systems as an original equipment manufacturer (OEM) closer to South Africa’s farming sector.

Read more...
Improving safety and belt life
Bearing Man Group t/a BMG Motion Control & Drives
BMG’s Power Transmission division has the solution to avoid dangers during installation and maintenance procedures in many industries. An easy to operate rotation device from Gates enhances safety for operators during installation and maintenance processes.

Read more...
More movement on the market
Motion Control & Drives
If you want to move something, you have to be able to control the movement. When positioning in the nanometre range everything matters and requires high performance motion control. Six years ago, Aerotech therefore set itself the goal of revolutionising the market for precision motion and machine control systems.

Read more...
Highly customisable robotic hand
Motion Control & Drives
NSK and the German Aerospace Centre are developing a robotic hand system that will help automate manual tasks. The concept centres on a customisable robot hand comprising individually configurable finger modules, an industry first.

Read more...
Electrically-operated diaphragm pumping solutions
Bearing Man Group t/a BMG Motion Control & Drives
BMG has extended its range of Ingersoll Rand ARO fluid handling products to include the new EVO series electric diaphragm pumps, designed to enhance energy efficiency and improve fluid handling productivity.

Read more...
Surface drill rigs for Navachab in Namibia
Motion Control & Drives
Epiroc South Africa recently delivered five of six FlexiROC drilling machines to key customer, Navachab Gold Mine.

Read more...
Grease degradation diagnosis technology
Motion Control & Drives
NSK is developing a world-first: a high-accuracy way of rapidly and accurately diagnosing the remaining life of lubricant grease. The company will provide the solution as a mobile app, enabling users to perform the onsite analysis of lubricant condition in bearings and linear motion systems.

Read more...
New compact VFDs with higher power ratings
Motion Control & Drives
Invertek Drives has revealed the extension of its industry-leading Optidrive Coolvert variable frequency drive with the launch of two new compact frame sizes with higher power ratings.

Read more...
Asset reliability care field dominated by WearCheck
Wearcheck Motion Control & Drives
Condition monitoring specialist, WearCheck has solidified its position as a leading player in the asset reliability care sector.

Read more...