Editor's Choice


Control loop case history 185: Temperature cascade control on boiler desuperheaters.

January 2023 Editor's Choice System Integration & Control Systems Design

Desuperheaters are an important element in boilers, and are used to reduce the temperature of superheated steam to a desired value. The control of desuperheaters is extremely important.

There are often quite complex temperature-to-temperature cascade control loops used in desuperheating control, and the final output steam temperature is controlled by adding spray water into the superheated steam. The temperature control of the final temperature is performed using a normal feedback (PID) controller.

On a couple of occasions (one in a large power station in the UK and another in a petrochemical refinery in South Africa) I have found that the people who implemented the control systems fed the output of the desuperheater temperature controller directly to the desuperheater spray water control valve. On both occasions I found huge problems occurring with the temperature control after the valve had aged.

Essentially, the output of the controller (PD) is ‘demanding’ that a certain quantity of water be fed into the desuperheater to satisfy the requirements of the controller as calculated by its PID algorithm, and thus ensure that the temperature process variable (PV) is kept as close as possible to setpoint (SP) with minimum variance at all times.

When the PD sends the signal directly to the valve, it is actually ‘asking’ the valve to move to a certain position. If the valve is sized and set up correctly and if it has no problems, then the correct volume of water should in fact be fed into the desuperheater. In reality, an average of 75% of valves exhibit problems of many different types, which may get worse as they age. Therefore, if they do have problems, or have not been set up correctly, they might not feed the correct quantity of water into the steam, as ‘directed’ by the temperature controller.

Another important thing to note is that one of the major limitations of feedback control is that you can only tune a controller to control a process as fast as the dynamic response of the process will allow. This, very broadly, means that fast processes (like flow) can be tuned with fast control, but slow processes (like most temperatures) can only be tuned with slow control. If you try and speed up the response of the control system to react any faster to changes such as SP changes or load disturbances (where the PV moves away from SP), then the loop starts cycling.

It is therefore very important that the equipment in the loop used on slow processes works well and without problems, because if the controller has to try and correct for errors caused by equipment like valves, as well as having to respond to changes in error (difference between SP and PV), then the control becomes very difficult and it may take an extremely long time for the controller to get the PV to the correct value.

To overcome this problem, in my opinion it is mandatory to use a flow control on the valve, with its SP coming from the PD (output) of the temperature controller (this is known as a cascade secondary flow control). The temperature control is now actually asking the flow controller to ensure that the process receives the exact volume of water that is required to meet the requirements of the temperature control.

The speed of the flow loop control is much faster than the temperature control, so it can quickly ensure that the valve does in fact deliver the correct amount of water into the desuperheater, and as a result the temperature process is not affected by any of the valve problems. This works brilliantly and I have helped plants achieve excellent control on slow processes with valves that are not working very well.

The first example in this article is taken from a desuperheater temperature controller that was sending its PD signal directly to the valve, and where the temperature control was so bad that the operators were running the loop in manual, with very poor results. Luckily there was a flowmeter in series with the valve, so we could test the valve performance.

Figure 1. Test results of a desuperheater with very poor temperature control.
Figure 1. Test results of a desuperheater with very poor temperature control.

Figure 1 shows the test done on this valve. The test shows how the flow through the valve behaved, with the signal coming directly from the PD of the temperature controller. The test showed some remarkable faults:

1.The valve is working very close to ‘seat’ at around 5% of opening. This means that the valve is hugely oversized. A well-known general rule is that, under normal load conditions, a valve should never work too close to seat, and as a guideline it is suggested that it should be above 20%. The reasons are that manufacturers cannot machine a valve plug to give really good linearity when close to seat, and also there might be huge forces on the plug if the differential pressure across the valve increases as the valve closes, which can cause uncontrollable cycling.

2. At the start of the test, the controller was in automatic, and it can be seen that a continuous cycle was in fact occurring.

3. The controller was then switched into manual and a series of step changes made on the PD of the controller. These showed:

a) In some places the valve actually moved in the opposite direction to the direction of the PD step.

b) On many steps the valve had huge overshoots.

c) The valve displayed seriously bad installed non-linearity.

d) The valve displayed extreme stickiness at times.

It was concluded that the valve could not provide proper control for the desuperheater temperature, and should be replaced. It was also recommended that, until this could be done, the plant should install a cascade flow control loop, which should be able to keep the flow more or less in the right place to at least achieve some semblance of temperature control.

To illustrate how this could work, the second example in this article is of a similar control on another desuperheater where the valve had serious problems, but they were still getting good temperature control on the desuperheater because they had used a cascade flow control with it.

Figure 2. Closed-loop test on the cascade flow loop of a well-functioning desuperheater.
Figure 2. Closed-loop test on the cascade flow loop of a well-functioning desuperheater.

Figure 2 shows a closed-loop test on the cascade flow loop, and it can be seen that the loop is in a continuous cycle. Now, although many people always attribute closed-loop cycling to bad tuning, there are also many other reasons why it may be cycling.

Figure 3. Open-loop test of the system in Figure 2.
Figure 3. Open-loop test of the system in Figure 2.

Figure 3 shows the open-loop test on the loop. Two major problems are immediately seen:

1. The valve is oversized by approximately four times, which can be seen from the relative step sizes in PV versus PD. It must be remembered that oversized valves multiply all the valve problems by the oversize factor.

2. On each valve reversal, the PV overshoots quite considerably. This is known as negative hysteresis, which can be a very bad problem as it often causes uncontrollable instability in the loop. It is caused by either insufficient power in the actuator to overcome the static friction properly, or else by positioner problems.

This is a wonderful example of how the use of a cascade flow control still allowed excellent control of the primary temperature control loop to be achieved, in spite of a valve with severe problems. If the output of the temperature controller had been fed directly to the valve, there is no way that proper temperature control could have been attained.


About Michael Brown

Michael Brown is a specialist in control loop optimisation, with many years of experience in process control instrumentation. His main activities are consulting, and teaching practical control loop analysis and optimisation. He now presents courses and performs optimisation over the internet.

His work has taken him to plants all over South Africa and also to other countries. He can be contacted at: Michael Brown Control Engineering CC, +27 82 440 7790, [email protected], www.controlloop.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Simple and efficient level measurement in the mining, minerals and metals industries
Endress+Hauser South Africa Editor's Choice Level Measurement & Control
Measuring devices in the mining, minerals and metals industries face the challenge of varying material states and long distances in measurement height. Endress+Hauser’s answer to these challenges is the new Micropilot family.

Read more...
PC-based control for fertiliser
Beckhoff Automation Editor's Choice Fieldbus & Industrial Networking
On a farm in the USA, valuable ammonia is extracted from slurry and processed into ammonium sulphate. NSI Byosis has transformed this complex process into a flexible modular system. This modular approach requires an automation solution with flexible scalability in both hardware and software, which this Dutch company has found in PC-based control from Beckhoff.

Read more...
Loop signature 28: Things to consider when tuning.
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
I was giving a course at a remote mine in the middle of the Namibian desert. We were discussing tuning responses, and as I always do on my courses, I mentioned that in my opinion ¼ amplitude damped tuning is not desirable, and is in fact not good.

Read more...
Control without complexity
Editor's Choice Motion Control & Drives
In an era where precision, performance and smart control define industrial success, the right driver can make all the difference. At Axiom Hydraulics, we’ve seen firsthand how the Sun Hydraulics XMD series transforms hydraulic systems, from mining and construction to agriculture and automation.

Read more...
The thermal combustion balancing act
Editor's Choice
From carbon taxes to export tariffs, and cost containment to security of supply and sustainability, companies are under increasing pressure to switch to greener fuel sources. Associated Energy Services warns that this pivotal change has some potentially serious knock-on effects.

Read more...
What’s driving the IE3 motor revolution?
WEG Africa Editor's Choice
The International Efficiency 3 (IE3) motor standard will soon become South Africa’s legal minimum standard, mandating that local suppliers offer more efficient electric motors. What is driving this change, and how does it affect the many industries that rely on these modern electric workhorses?

Read more...
Unlocking the smart factory
ElectroMechanica Editor's Choice Motion Control & Drives
At ElectroMechanica, we recognise that transitioning to smart automation isn’t just about adopting new technology; it’s about solving real challenges. Labour shortages, rising costs and downtime due to outdated machinery make digital transformation essential for long-term competitiveness.

Read more...
Case History 197: Bad reboiler temperature control.
Michael Brown Control Engineering Editor's Choice Flow Measurement & Control
It is very important that reboiler temperature controls operate well in petrochemical refineries, or the product quality can really suffer. I was asked to check such a control in a refinery where they were having problems with one of these controls.

Read more...
The future of industrial automation: fieldbus and industrial networking
LAPP Southern Africa Editor's Choice
As a global leader in integrated solutions in the field of cable and connection technology, LAPP recognises that fieldbus and industrial networking technologies are pivotal in shaping the future of manufacturing and production processes.

Read more...
AI-driven innovations with CCTV and cyber security
RJ Connect Editor's Choice Fieldbus & Industrial Networking
The fast progress of artificial intelligence (AI) and video analytics is redefining the rail surveillance landscape. Advancements have bolstered proactive event detection, predictive maintenance and enhanced situational awareness.

Read more...