Editor's Choice


Case History 184: Why couldn’t they tune the loops to get good control?

October 2022 Editor's Choice

I never get tired of showing people how important it is to troubleshoot a control loop before trying to tune it, as so many people think tuning will overcome all problems. This month’s article covers two examples where all the tuning in the world would not have achieved good control.

Example 1: The sticky valve

In the first example, the operators in a petrochemical refinery were having trouble trying to control the flow of a light end-product, and had resorted to trying to run the loop in manual. However, from time to time there were quite a few load disturbances which affected the flow badly, and they had to frequently revisit the loop to make adjustments.

Figure 1 is a closed-loop test ‘as found’ (ie, with the original tuning in it). At the start of the test, one can see that the process value (PV) is slowly drifting up to the setpoint (SP) and, after about 10 minutes, finally reaches it. The SP was then stepped up by a small 2% after which the PV moved up but then seemed to settle before reaching the SP.

The controller output (PD) had moved up by about 20%, and was still rising quite steeply when the SP was stepped down by 2% again. At this stage the PD came down very quickly, but it took the PV quite a while before it, too, started moving down. This is a sign of the valve not moving and indicates that there is hysteresis or stickiness in the valve. The PV finally got back down to the SP with the PD well below the value it had been at the start of the step-up in SP. This would confirm that there is probably bad hysteresis in the valve.

The open-loop test is shown in Figure 2, in which the following can be seen:

a) When the PD is below about 40%, the PV responds well to steps in the PD. When the PD is above that, the steps in PV are very much smaller, and became smaller the higher the PD was stepped. Although there is a chance that there is something strange with the installed characteristics of the valve, it is far more likely that the flow is reaching a point of saturation, probably due to insufficient pressure in the pipe.

b) The process gain of the loop is about 0,5 – based on the lowest step changes. This is usually a sign that the flow transmitter has too wide a span, but this might not be the case if the flow could have reacted better if there were more pressure in the pipe.

c) There is no real indication in this test of valve hysteresis or stickiness, but it must be taken into account that these things do not always show when a valve is reacting to step changes in PD.

A final closed-loop test was carried out with improved tuning, and this is shown in Figure 3. It can be seen that the valve was in fact extremely sticky, and taking a long time to react to many of the SP changes. Unfortunately, the plant needed to keep the SP at around 50%, where it was in the saturation region, and this is a case where the plant needed to try and increase the pressure to get the flow to react properly, and also the valve needed servicing. Only then would it be able to attain good control.

Example 2: Waste gas flow

The second example is even more dramatic. The loop’s purpose was to control the flow of waste gas to the flare in the same plant as above, which is quite an important control in such plants. The problem was that the flow followed the setpoint, but cycled quite wildly about it.

Figure 4 shows the closed-loop ‘as found’ test with changes in SP being made, and it can be seen how badly and frequently the rapid fluctuations occurred.

Many people in the C&I; department had tried tuning the controller to stop the fluctuations, but all to no avail.

Figure 5 is the open-loop test, which immediately showed what was happening. The valve was jumping around badly and, upon changes in the PD signal, produced huge over- or under-shoots. Sometimes it didn’t respond properly at all, sometimes it cycled, sometimes it moved the wrong way, sometimes it stuck, sometimes it moved too much – all making it very non-repeatable.

This is one of the most interesting and dramatic examples I have seen of a valve not following the PD signal properly. Luckily, the fluctuations were all in a relatively narrow band, so an average flow control was possible. Another interesting thing is that nobody in the C&I; department was aware of the problem, and all had tried tuning.

It was later found that the actual problems with the valve were that, first, there was some very bad play in loose linkages and that, second, the positioner had not been properly tuned.


About Michael Brown


Michael Brown.

Michael Brown is a specialist in control loop optimisation, with many years of experience in process control instrumentation. His main activities are consulting, and teaching practical control loop analysis and optimisation. He now presents courses and performs optimisation over the internet.

His work has taken him to plants all over South Africa and also to other countries. He can be contacted at: Michael Brown Control Engineering CC, +27 82 440 7790, [email protected], www.controlloop.co.za


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Cutting-edge robotics and smart manufacturing solutions
Yaskawa Southern Africa Editor's Choice
Yaskawa Southern Africa made a compelling impact at this year’s Africa Automation and Technology Fair.

Read more...
A cure for measurement headaches in contract manufacturing
VEGA Controls SA Editor's Choice
A contract manufacturing organisation provides support to pharmaceutical and biotechnology companies in the manufacturing of medications, formulations and substances. VEGA’s measurement solutions offer accuracy and reliability for monitoring levels and pressures during the manufacturing process.

Read more...
PC-based control for a food capsule and pod packaging machine
Beckhoff Automation Editor's Choice
For TME, a machine builder specialising in the packaging of powdered foods, Beckhoff’s PC-based control technology offers unlimited opportunities when it comes to performance and innovative capacity in terms of flexibility, scalability and openness.

Read more...
Case History 198: Cascade control overcomes valve problems
Michael Brown Control Engineering Fieldbus & Industrial Networking
A large petrochemical refinery asked me to perform an audit on several critical base layer control loops. This article deals with a problem found on a valve controlling the flow of fuel to a heat exchanger.

Read more...
Simple and efficient level measurement in the mining, minerals and metals industries
Endress+Hauser South Africa Editor's Choice Level Measurement & Control
Measuring devices in the mining, minerals and metals industries face the challenge of varying material states and long distances in measurement height. Endress+Hauser’s answer to these challenges is the new Micropilot family.

Read more...
PC-based control for fertiliser
Beckhoff Automation Editor's Choice Fieldbus & Industrial Networking
On a farm in the USA, valuable ammonia is extracted from slurry and processed into ammonium sulphate. NSI Byosis has transformed this complex process into a flexible modular system. This modular approach requires an automation solution with flexible scalability in both hardware and software, which this Dutch company has found in PC-based control from Beckhoff.

Read more...
Loop signature 28: Things to consider when tuning.
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
I was giving a course at a remote mine in the middle of the Namibian desert. We were discussing tuning responses, and as I always do on my courses, I mentioned that in my opinion ¼ amplitude damped tuning is not desirable, and is in fact not good.

Read more...
Control without complexity
Editor's Choice Motion Control & Drives
In an era where precision, performance and smart control define industrial success, the right driver can make all the difference. At Axiom Hydraulics, we’ve seen firsthand how the Sun Hydraulics XMD series transforms hydraulic systems, from mining and construction to agriculture and automation.

Read more...
The thermal combustion balancing act
Editor's Choice
From carbon taxes to export tariffs, and cost containment to security of supply and sustainability, companies are under increasing pressure to switch to greener fuel sources. Associated Energy Services warns that this pivotal change has some potentially serious knock-on effects.

Read more...
What’s driving the IE3 motor revolution?
WEG Africa Editor's Choice
The International Efficiency 3 (IE3) motor standard will soon become South Africa’s legal minimum standard, mandating that local suppliers offer more efficient electric motors. What is driving this change, and how does it affect the many industries that rely on these modern electric workhorses?

Read more...