Temperature Measurement


Acoustic gas temperature measurement technology for combustion plants

September 2022 Temperature Measurement

In highly complex plants such as those in the energy sector or steel industry, standards for the measurement and analysis technology in use are also correspondingly high. These include not only fast and precise data acquisition, but also a system design that is as flexible, expandable, cost-effective and space-saving as possible. This is precisely why Bonnenberg & Drescher relies on PC- and EtherCAT-based control and measurement technology from Beckhoff Automation for its acoustic gas temperature measurement (AGAM).

Based in Aldenhoven, Germany, Bonnenberg & Drescher is a specialist in process analysis and optimisation, and works primarily in combustion applications. The company was founded in 1971 and initially dealt with nuclear engineering projects, from the design and lifetime analysis of cooling systems and critical components, to nuclear safety considerations such as radiation protection, radioactive emissions and their behaviour in the environment. In the 1980s, its range of services expanded to include conventional power plants, with a particular focus on the analysis and optimisation of combustion processes. The company has been using the AGAM system for this purpose since the early 1990s, with the technology also used in waste incineration plants and blast furnaces.

The physical principle behind the measurement setup is simple: the speed of sound in a gas depends on the temperature – the hotter the gas, the faster the propagation speed of the sound waves. For accurate measurement of gas temperatures, several microphones are distributed around the boiler, which in turn generate a signal that is received simultaneously by all units. This is then used to calculate a 2D temperature profile of the gas in the boiler.

The special benefit of this method is the radiation-free measurement of the gas temperature, which is used to optimise processes within the plant for results such as optimised combustion to reduce fuel usage and lower CO2 emissions, strong reduction of corrosion in the plant, and increased plant throughput and availability (waste incineration).

PC-based control replaces specialised products and additional components

In the past, the system setup for this measurement and analysis system was implemented rather ‘conventionally’: up to 16 channels with a 25 kHz clock frequency (i.e., 400 000 values) were acquired and processed using a powerful server system for measured value processing and archiving (through methods such as Fourier transformation and correlation). There was also a PLC for simple automation functions, and various special products such as A/D converters for fast, deterministic and high-resolution acquisition of analog signals (sound waves).

The use of PC-based control technology from Beckhoff reduced the number of necessary components to a single CPU system. The CX2062 embedded PC offers sufficient performance for computationally intensive analyses with its Intel Xeon CPU (2,0 GHz clock frequency and 8-core processor), and even more powerful processors are available if necessary.

According to Bonnenberg & Drescher, the fast and time-synchronous acquisition and digitisation of the analog signals is particularly important for the quality of the analysis system. The higher the sampling rate, the more accurate the temporal resolution in particular, and the lower the jitter, the more accurate the temperature measurement via Fourier analysis and correlation of the measurement channels.

This is where the EL3702 EtherCAT analog input terminals come into play, as these use the oversampling function, i.e., they run their own measurement cycle in addition to each fieldbus cycle, which they can use to ‘oversample’ the fieldbus. The distributed clocks of EtherCAT mean the time resolution is also very precise (+/-20 ns). What’s more, the entire data set is synchronised and timestamped with the EtherCAT cycle and the TwinCAT software application with the same accuracy. With the EL3702 EtherCAT terminal, signals can be acquired at up to 100 kHz, and the number of channels is no longer limited to 16 with the new system.

Modular system increases flexibility

The ADS router is the communication centre of a TwinCAT system. From here, the pre-processed data is made available to other applications and transferred to the C# environment of the AGAM system for further processing via ADS-DLL. The results are then also transferred back to the TwinCAT system via ADS, and can be forwarded from there to customer systems via common fieldbus interfaces such as EtherCAT, Profinet and Modbus, or made available as a visualisation web interface in the customer’s network.

On the I/O level, the system is also very easy to expand, according to Bonnenberg & Drescher’s experience. Existing systems can be supplemented by simply plugging in additional terminals, and only further instances of existing software modules have to be formed within the software. The availability of EtherCAT couplers with fibre-optic interfaces (plastic, multimode or single-mode) makes the system even more flexible, as this makes it possible to reach distant measuring points and minimise analog wiring.

Quality management through reciprocal control system

The use of Beckhoff technology has also resulted in significant progress being made in terms of quality assurance. For the necessary simulations, essentially the same system is used as for the measurement technology, just on a reciprocal basis: the components on the boiler are simulated by generating the microphone data via the EL4732 oversampling analog output terminals, and the 24 V signals correspondingly in the reverse direction. Each measurement system undergoes several days of endurance testing before it is delivered to customers.

The modified AGAM-Q1 system has also been available since 2021. It has been approved by German inspection body TÜV and is suitable for use in official and certified temperature measurements in plants. The EL4723 output terminals are used for the legally required self-test of the measuring system.

Overcurrent protection terminals save space and costs

In the case of the EL9227-5500 electronic overcurrent protection terminal, the initial focus was on its standard use: replacing conventional fuses with an electronic fuse with an EtherCAT interface. The many benefits of this include:

• Space and cost savings.

• Flexible configuration of tripping current, warning level for current and voltage, fuse characteristics, starting behaviour, etc.

• Complete measurement function of current and voltage as cyclic process data for the PLC (power supply and load diagnostics).

• Extensive diagnostics, for example with regard to trigger reason, setting changes by users and log files.

In addition, Bonnenberg & Drescher identified another very useful application scenario in that the electronic overcurrent protection terminal serves as a digital switching output with measurement and diagnostic functions, namely for solenoid valves. The measurement functions of this EtherCAT terminal enable the current and voltage characteristics at the switching point to be displayed as trend lines, so that various valve faults – cable break, coil defect or mechanical defects in the valve – can now be easily and reliably diagnosed.

Advantages of system integration

“The integration of measurement data acquisition, archiving, analysis and presentation offers tangible benefits for us,” sums up Dr Martin Brodeck, managing director at Bonnenberg & Drescher. “At the start of the measurement chain, special electronics are replaced by standard fieldbus technology. This guarantees the supply of spare parts for decades and ensures that we are continuously involved in innovations without having to reserve resources ourselves.”

Another important aspect mentioned by Dr Brodeck is the long-term availability of the CX2062 embedded PC, which is available for at least 10 years and subsequently covered by service for a further 10 years – and on a worldwide basis, no less: “Our customers can obtain these components almost anywhere in the world, directly from one of the 40 Beckhoff international subsidiaries and via cooperation partners in more than 75  countries. The handling of the entire system has been significantly simplified compared to before, so it has become much more manageable for our customers. In many cases, they can now help themselves without us having to intervene. What’s more, having the embedded PC as the basis of our platform ensures a successful symbiosis of automation technology and the IT world, which is an invaluable advantage especially for our computationally intensive applications including database connections and web interfaces.”


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Integrating fire alarm systems into building management systems
Beckhoff Automation Fieldbus & Industrial Networking
Fire alarm systems work independently of the building automation system. Schrack Seconet has developed a flexible gateway using ultra-compact industrial PCs and TwinCAT from Beckhoff, which can be used to flexibly convert a customer-specific communication protocol to a wide range of transmission standards.

Read more...
Industrial PC for high demand on 3D graphics or deeply integrated vision
Beckhoff Automation Industrial Computer Hardware
Beckhoff Automation’s C6043 industrial PC with NVIDIA GPU handles applications with high demands on 3D graphics or deeply integrated vision and AI program blocks with minimal cycle times.

Read more...
Open control technology reduces energy consumption and carbon footprint.
Beckhoff Automation IT in Manufacturing
The Swedish company Airwatergreen AB is breaking new ground in the dehumidification of air in industrial buildings and warehouses. PC-based control from Beckhoff regulates the innovative process.

Read more...
PC-based control regulates innovative dehumidifiers
Beckhoff Automation Fieldbus & Industrial Networking
Swedish company, Airwatergreen is breaking new ground in the dehumidification of air in industrial buildings and warehouses. The patented CVP technology reduces energy requirements and ensures an indoor climate that prevents corrosion and mould growth. PC-based control from Beckhoff regulates this innovative process.

Read more...
New temperature transmitters with Profibus connectivity
Temperature Measurement
Siemens is enhancing its temperature measuring device portfolio with the transmitter duo, Sitrans TH420 PA and Sitrans TF420 PA. Both devices feature Profibus connectivity, advanced safety functions and expedited commissioning all in one unit.

Read more...
PC-based control in window and door production
Beckhoff Automation Motion Control & Drives
Belgian machine builders CNC Solutions and Calvet are automating previously manual processes in aluminium window and door production. High-performance drive technology, motion control and electric cylinders from Beckhoff proved crucial in equipping the machine with the necessary finesse when pressing the window frames.

Read more...
Enhancing industrial efficiency through advanced temperature control
Iritron Temperature Measurement
Iritron has been offering modular smart thyristor drives to the local and international mining, minerals and metals market, including the latest new leading innovations in temperature control technology. These drives combined with advanced proportional-integral-derivative (PID) control will change the way large industries manage their heating processes, reducing costs and extending equipment lifespan.

Read more...
Non-contact infrared thermometer
Temperature Measurement
AMETEK LAND has developed a new non-contact infrared thermometer for precise measurement and control during deposition processes in optical fibre manufacturing.

Read more...
Pluggable system solution helps tackle skills shortages and addresses DC power supply needs
Beckhoff Automation Enclosures, Cabling & Connectors
As a replacement for the conventional control cabinet, the MX-System from Beckhoff is a uniform modular automation system that can be used to completely replace traditional control cabinets with function modules in many applications.

Read more...
PC-based control for advanced hydrogen storage technology
Beckhoff Automation Fieldbus & Industrial Networking
Sufficient storage options for renewable energies are essential to use them as efficiently as possible. GKN Hydrogen offers a particularly compact and safe option, low-pressure metal hydride hydrogen storage systems with PC-based control from Beckhoff.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved