Motion Control & Drives


Electromagnetic brakes for DC motors

May 2022 Motion Control & Drives

Mini motor applications utilise DC motor technology because of compactness, low weight, and reliability. Stopping, slowing or holding the position and load of these motors is crucial for many applications, from controlling robotic joints through to automated window shades. This control is achieved by integrating an electromagnetic brake, accurately specified according to the application requirements and parameters of the DC mini motor. Louis Mongin, BLDC product strategic manager at Portescap, explains the technology behind electromagnetic brakes for DC mini motors.

In miniature DC motor applications, electromagnetic brakes are used to hold, stop or slow down a load. Without a brake, a motor would continue to rotate without control, even after cutting its supply of voltage or current; or it would fail to hold position against a competing power. While alternative torque control devices could be used, electromagnetic brakes can combine precision with a compact, reliable, energy-efficient and cost-effective design.

To hold a DC mini motor in position at a specific stopping point across a variety of industrial and medical applications, the general design includes a fixed field coil that acts as an electromagnet to generate torque to brake or hold the load. The coil’s electromagnetism controls an armature that either engages or disengages with a structure. The design of the brake mechanism features a hollow shaft mounted onto the shaft of the DC motor, which gives compact integration.

Brakes are available in a power-on design, which means that the brake is only engaged when current flows in the field coil. This is acceptable when the brake doesn’t have to hold a high load, or if holding torque isn’t required after power-off. Alternatively, with a power-off brake, the brake remains engaged at all times unless current is flowing in the electromagnet, which creates an inherently safer design for some applications.

Spring-set brakes utilise power-off braking and are used to automatically stop and hold a load in the event of a power failure or emergency stop situation. In this design, braking force is applied through a compression spring, and the brake is usually released by manual control. The advantages include repeated braking cycles from full motor speed with no torque fade, and the designs can be customised in aspects such as voltage rating and dynamic friction material according to the spring force requirement. The disadvantage of a spring brake is that it can present backlash, affecting the precision it can offer for dynamic braking or position holding.

Instead, for applications where dynamic stopping and holding a moving load is required, as well as for high cycle rate stopping, a permanent magnet power-off brake should be used. In this design, brakes are engaged magnetically and disengaged electrically, providing safe load holding in power shut-off. When voltage or current is applied to the brake, the coil becomes an electromagnet and produces magnetic lines of flux counteracting those of the permanent magnet. This action releases the armature, creating an air gap and allowing the load shaft to rotate. Increasing voltage or current also enables braking force to be controlled with precision, as opposed to the spring brake’s on/off functionality.

As the permanent magnet brake design includes no moving parts, the brakes can operate at very high speeds. Unlike spring brakes, they don’t allow backlash, because the design includes a fixed connection between the armature, spring and hub. This allows them to be controlled with precision. As heat is generated during dynamic braking, this means that the brake must be correctly sized to deal with friction, load and torque requirements. Permanent magnet brakes require consistent and specific current, meaning that these brake designs should be carefully considered before using them in conditions that could cause current fluctuations, such as high or changing temperatures.

Thanks to the precision control of a permanent magnet brake, they are well suited to use in robotic arm joints. Their zero-backlash capability means they can precisely hold torque and also provide dynamic stopping. An example of a DC mini motor application that requires safety in holding torque is the control of automated window shades. Providing automatic operation, the power-off brake also allows the motor to hold the shade position when power is removed.

Portescap’s engineers regularly integrate DC mini motor braking solutions into bespoke OEM applications. The team ensures exacting sizing and specification, as well as recommending the most effective technology and features for specific requirements. Design is combined with rapid prototyping and testing to ensure safety and precision, before moving the development to volume production.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Extreme pressure additives for oil
Wearcheck Motion Control & Drives
Extreme pressure additives - the other metal guardians in your oil additives - work their magic under pressure.

Read more...
SEW EURODRIVE sets the pace with power packs in African mining
Motion Control & Drives
Comprehensively supporting the mining sector with commodity-specific drive train solutions, SEW-EURODRIVE has cemented its reputation as a trusted partner to the industry, a testament to its customer-centric approach.

Read more...
Anti-wear additives – the metal guardians in your oil
Wearcheck Motion Control & Drives
Anti-wear additives are used to protect against wear and the loss of metal surfaces during mixed-film and boundary-film lubrication.

Read more...
SEW-EURODRIVE advances industrial performance with next-gen predictive maintenance
Motion Control & Drives
Predictive maintenance, once considered an emerging technology, is now a core requirement for modern operations and SEW-EURODRIVE is driving this evolution with its advanced DriveRadar IoT Suite.

Read more...
Generation surface drill rig
Motion Control & Drives
Epiroc is launching a new and improved PowerROC T45. This new generation surface drill rig offers increased fuel efficiency and high availability, and is a welcome addition to the PowerROC family.

Read more...
Coke drum integrity project at Canadian oil sands site
Motion Control & Drives
Mammoet supported a leading Canadian energy provider in Alberta’s oil sands with replacing its original eight coke drums.

Read more...
Polymer bearings contribute to heavy lifting success
Motion Control & Drives
Leading dock-levelling and materials-handling specialist, REV Designs & Installations designs and manufactures a wide range of loading, docking and lifting equipment including some of the largest scissor lifts ever produced in the country. A key engineering decision was to move away from greased steel bearings and fully adopt igus high-performance polymer bearings across the key pivot points of the new lifts.

Read more...
Press technology enhances performance and product quality at tissue machines
Valmet South Africa Motion Control & Drives
Valmet has been selected to replace five existing tissue machine shoe presses with its state-of-the-art Advantage ViscoNip press technology for Lee & Man Paper Manufacturing in China.

Read more...
OEM-standard repairs for industrial gear units
Bearing Man Group t/a BMG Motion Control & Drives
BMG, the official OEM for Hansen gearboxes, is authorised to repair Hansen industrial gear units in strict accordance with the manufacturer’s documented procedures, preserving the design tolerances and operational reliability required in demanding industrial environments.

Read more...
Fast hoist for wind turbines
Motion Control & Drives
RUD neXera offers time and cost savings in wind turbine maintenance.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved