Editor's Choice


What to do when fragmented systems get too complex

November 2021 Editor's Choice

In 1818, Mary Shelley, a well-known English author, wrote the famous fictional novel – Frankenstein. She tells the story of several unorthodox laboratory experiments that created a hideous living monster from a range of parts. The resulting creature, a mix of incompatible bits and pieces, was shunned by society and ended up wandering alone in the wilderness.

You might be wondering what the relevance of this centuries old story is to modern IT in manufacturing? There are, in fact, several similarities. As manufacturing organisations undergo digital transformation, several new technologies are introduced, often in a piecemeal and seemingly random fashion. These tactical projects might introduce new mobile devices, IoT devices and cloud-based services. As part of the implementation project, specific point integrations to supervisory control systems are often included in the scope. The result over time creates a complex Frankenstein-like monster comprising of several disparate and poorly integrated technologies that work after a fashion but are poorly matched. Many of these point solutions are sometimes constrained to a departmental silo and barely meet the criteria for an integrated next-generation responsive IT system necessary for real digital transformation.

Reasons to upgrade

These disparate systems will eventually become unmanageable and kicking the can down the road is a rational response when there are other short term business priorities. But eventually the problem will need to be addressed. Re-implementing some of the smaller applications using an existing common platform might be viable and help to reduce some complexity. It will, however, eventually become necessary to consider a total network upgrade. All of this must be done while still running the plant and maintaining the integrity of the existing automation systems.

There might be other pressing reasons to upgrade:

Cybersecurity threats: many of the early scada systems running in factories were designed before the Internet became pervasive. Best practice 20 years ago involved a gateway that separated the ‘plant’ and ‘business’ systems. This approach is no longer practical, as common standards and converging technologies demand an unrestricted data flow between plant and business. Cybersecurity has therefore become a real risk in the plant.

Technical obsolescence: over time, even the best technologies will become obsolete. Computer hardware spares will become more difficult to source. Software operating systems fall out of maintenance and will no longer be supported. Skills that are able and willing to work on old systems will be harder to find as experienced in-house experts retire.

Changes in the business: as equipment vendors start to offer a more complete service, including remote condition monitoring of their equipment, an upgrade of the network infrastructure will be necessary. These piecemeal infrastructure upgrades might be more cost-effectively done and involve less rework if undertaken as part of a wide-ranging upgrade that also includes the supervisory control hardware.

Considerations when upgrading

Clearly, a major scada and network upgrade will be a complex undertaking. Many decisions will be necessary at the outset of such a project. Factors to consider might include:

Phased approach: upgrading segments of the network and systems one at a time to limit disruption. This might also involve running old and new in parallel for some time.

Connectivity: re-optimising the best combinations of industrial wi-fi, Ethernet, fibre, RF-mesh, LTE/5G cellular, satellite and VLF networks.

Protocols: retiring old proprietary networks and standardising on a modern open standard that avoids proprietary lock-in and that is also robust, secure and future-proof.

Reconfiguring gateways and firewalls: reconfiguring the network segments to separate critical traffic and guarantee performance using modern robust and upgradeable firewalls that can protect the system from cybersecurity threats.

VPN connectivity: ensuring that all network traffic routed over public networks is protected against the risk of interception and possible denial of service attacks.

Edge computing devices: ensuring that plant data is consolidated, stored and processed at the edge before forwarding to an external system. Well-configured edge computing devices can help maintain reliability when connectivity is not guaranteed and can also reduce bandwidth across the factory boundary.

Orchestration: implementing a middleware architecture that can synchronise and coordinate information flows between distributed systems, deliver messages, validate data and act as a broker between software services.

Scada: new or upgraded supervisory control and data acquisition systems that are architected for modern heterogeneous environments and remote access.

IIoT device management: device registry, provisioning, upgrading, deployment across the entire plant or even the business.

Data storage, management, analytics and machine learning applications: cloud or on-premises data storage, with retrieval and analysis of large amounts of structured and unstructured data from the underlying plant and business systems.

Historical data: archived or migrated as required.

Selecting the right partner

As mentioned, a plant network upgrade can be a complex project. Not all vendors are equal and it is important to research the different service provider offerings in detail before finalising their scope of services. Individual vendors will normally specialise in either hardware, connectivity, system integration, or platform and software applications. Few can do them all as they require scarce, specialised skills – many work with partners.

If the vendor disappears or loses key skills, you might need to pick up the pieces. A proprietary system might have several benefits and be optimised, but an open system might be more flexible and present a lower risk of vendor lock-in.

Impact on the organisation and workers

Finally, a significant upgrade to the scada infrastructure might also involve some organisational changes. The convergence of IT and OT is a new opportunity for manufacturing companies to work more effectively. The Covid-19 pandemic has also led to an increase in remote work. Powerful consumer mobile devices allow workers to remain connected, both at remote locations and when working in certain areas in the factory. Connected worker technologies and wearable devices can also introduce additional benefits by improving worker health and safety. The way people work in the plant will change permanently.

Concluding remarks

Eventually, all the Frankenstein-like systems born in the early days of Industry 4.0 will need to be reworked, retired, simplified, or streamlined. At some point, a major system upgrade will be required. To upgrade a scada system and the underlying plant network is not a simple project. Those of us in IT who have experienced a major ERP business system upgrade understand the complexity of such an undertaking. The good news is that with proper planning, a strategic approach, careful vendor selection and a systematic project methodology, you can successfully upgrade to a future-proof ICT infrastructure that supports digital transformation.


About Gavin Halse


Gavin Halse.

Gavin Halse is a chemical process engineer who has been involved in the manufacturing sector since mid-1980. He founded a software business in 1999 which grew to develop specialised applications for mining, energy and process manufacturing in several countries. Gavin is most interested in the effective use of IT in industrial environments and now consults part time to manufacturing and software companies around the effective use of IT to achieve business results.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Time-sensitive networking
RJ Connect Editor's Choice Fieldbus & Industrial Networking
In this article, we will explore what is driving the rise of time-sensitive networking, how it is reshaping industrial efficiency, the challenges when deploying this technology, and ways to tackle these challenges.

Read more...
Loop Signature 30: Nonlinearity in control loops (Part 1)
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
If nonlinearity occurs it means that if one is to carry on controlling with the same response to changes in load or setpoint, then the tuning of the controller will also need to be adjusted to meet the new conditions.

Read more...
Precision in paper processing
VEGA Controls SA Editor's Choice Level Measurement & Control
Paper manufacturing is a demanding process that relies on consistency, precision and control at every stage. The VEGABAR 82 pressure transmitter is well-suited to these harsh environments.

Read more...
Ensuring clean and safe water
Endress+Hauser South Africa Editor's Choice Analytical Instrumentation & Environmental Monitoring
Endress+Hauser’s comprehensive range of disinfection sensors is designed to monitor and control disinfectant levels in water treatment processes.

Read more...
A South African legacy in telemetry
Interlynx-SA Editor's Choice Industrial Wireless
Telemetry is becoming a vital component of industrial strategy, allowing companies to harness real-time data to optimise processes and reduce waste. One company leading this technological shift is Interlynx.

Read more...
Case History 199: Another example of the effectiveness of cascade control
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
In my last article I wrote about how cascade control systems can effectively overcome valve problems. This article gives another example of how a temperature control was able to perform well, in spite of really severe valve problems.

Read more...
Upgrading legacy automation
Omron Electronics Editor's Choice Fieldbus & Industrial Networking
Legacy automation is characterised by technology in the later stages of its useful life. As new automation technologies continue to emerge and interconnect at an exponential rate, failing to integrate these technologies can widen the gap between the competitive and the obsolete.

Read more...
Planetary gear units for high torque requirements
SEW-EURODRIVE Editor's Choice Motion Control & Drives
Packing a compact design, along with high torque and low-speed outputs, the new SEW PPK and SEW P2.e planetary gear units from SEW-EURODRIVE offer new capabilities in continuous heavy-duty applications where space is at a premium.

Read more...
These robots crawl into every nook and cranny
DNH Tradeserve t/a DNH Technologies Editor's Choice Motion Control & Drives
Inuktun's small crawler robot magnetically sticks to metal walls and is able to move in all directions. It carries cameras, sensors and tools for inspection or maintenance work in tight pipes and on the outer hulls of tanks or ships. All crawler modules and cameras are equipped with brushed DC motors from Swiss drive specialist, maxon using various motor-gearhead combinations.

Read more...
Swiss watchmaking meets hypercar power
Horne Technologies Editor's Choice
The display of Bugatti’s upcoming luxury model, Tourbillon will be something truly special. Instead of a digital version, the driver will see a genuine Swiss timepiece behind the steering wheel.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved