Editor's Choice


Control loop: Case History 179 - Some unusual measurement and control problems

September 2021 Editor's Choice

As I have often mentioned, many people do not know how to set up control on PLC/scada systems properly and errors in control and measurement often result.

Admittedly I have found similar problems in DCS control systems, but much more rarely. I think this is because DCS systems are usually found in plants where there is a strong control ethos and people in the manufacturing teams have a better understanding of control and measurement. Also, DCS systems have many more safeguards built into them to prevent users making mistakes than do most PLC/scada systems.

Problems with a nitrogen flow control loop

The example given in this article illustrates some mistakes made by the system integrators and control engineers at a metals extraction plant that used a well-known make of PLC and scada for its controls. The C&I; staff in the plant had not picked the errors up and had been working for years with the problems. The loop in question was an important nitrogen flow control feeding an hydrogen sulphide reactor.

Whenever one optimises a control loop, it is essential that you first discuss the control in its entirety with the people who look after the control side of things, as well as with the people who really understand the process. In many plants they are the same people, but often I find that people on the control side do not really understand the process and vice versa, people on the process side often don’t understand controls.

Typically, we investigate and discuss the following:

1. Details of the process.

2. The configuration of the control loop.

3. The control strategy.

4. The purpose of the control.

5. How quickly the control must react. For example, sometimes they want it as fast as possible, or maybe it must be kept slow so as not to disturb things downstream. Sometimes it doesn’t really matter and it is fine if it operates mostly in the right region.

6. What external factors can affect the control and can this loop affect other controls or processes?

7. Details of the measuring system.

8. Type of valve.

9. Problems that are being encountered with this control.

In the case we are discussing here, the two main problems encountered by the operators and process engineers were firstly that the readings didn’t tie up with laboratory measurements and mass flow balances and secondly, the control was not satisfactory, being slow and hardly ever getting to SP (setpoint).

On investigating, it was discovered that the range set in the PLC was incorrect. The actual flow transmitter range was set to 0-1125 m3/h, but the figure that had been programmed into the controller’s PV (process variable input) was 0-1200 m3/h. On top of this, the transmitter signal coming into the PLC was first divided by 1,25, as the process people wanted to see a mass flow range of 0 -900 Nm3/h and not volume flow figures. This explained the discrepancy observed by the process people.

The next problem observed was that the flow signal was running at about 5% of the full-scale reading. This is potentially very bad. As a rule, very few flow measurements are accurate and reliable so low down in the range and may even be incorrect, which does depend on the type of measurement and the transmitter’s rangeability. Unfortunately, at the time of the testing, no one was available who could advise on the details and specification of the transmitter.

Optimising the loop

The first live test carried out on the loop is nearly always a closed loop test with ‘as found’ tuning, where setpoint changes are made on the loop with the original tuning (in this case P = 0,5 and I = 10 sec/repeat). There was also a lag filter with a time constant of 2,45 seconds inserted in the PLC before the PV input to the controller. The test is shown in Figure 1 and the following observations were made:

• The transmitter is working far too low down as discussed earlier.

• The tuning is incredibly slow and takes far too long to follow setpoint.

• Although the filter is relatively small there is no need for it, as filters introduce other problems. (Discussed in other articles).

The open loop test (in manual) is shown in Figure 2. The filter has been removed. It can be seen that:

• The process gain (the ratio of the steps in PV to PD, the controller output) is about 0,3, which would indicate the transmitter is probably over-spanned by a factor of three.

• There is very slight non-linearity in the installed characteristics, which is not serious.

• The valve has an overshoot when moving in the closing direction. This is not particularly serious but could cause a stick-slip cycle when the loop is in automatic with better tuning. Possibly it could be eliminated by tuning the positioner a little better.

• Apart from this the valve is working very well.

The controller was then tuned using the largest step in PV (for safety). The Protuner gave a medium tune of P = 0,4, and I = 1 sec/repeat.

The final closed loop test with the new tuning is shown in Figure 3. It can be seen how well the control now works and it is about 15 times faster than the original tuning. This is an example of what we often find when performing loop optimisation where lack of knowledge of the practicalities of control results in underperformance and in this case, imparting incorrect information.


About Michael Brown


Michael Brown.

Michael Brown is a specialist in control loop optimisation with many years of experience in process control instrumentation. His main activities are consulting and teaching practical control loop analysis and optimisation. He gives training courses which can be held in clients’ plants, where students can have the added benefit of practising on live loops. His work takes him to plants all over South Africa and also to other countries. He can be contacted at Michael Brown Control Engineering, +27 82 440 7790, [email protected], www.controlloop.co.za


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Swiss watchmaking meets hypercar power
Horne Technologies Editor's Choice
The display of Bugatti’s upcoming luxury model, Tourbillon will be something truly special. Instead of a digital version, the driver will see a genuine Swiss timepiece behind the steering wheel.

Read more...
Reinventing the wheel
Editor's Choice
Once a curiosity in the early automotive age, in-wheel motors are now re-emerging with real promise. From electric cars to commercial vehicles and even aircraft, they are on the verge of transforming transportation engineering.

Read more...
Creating new magnets for electric motors
Editor's Choice
Innomotics, a global specialist in electric motors and large drive systems, is coordinating a consortium for a research project on ‘Integrated Product and Process Innovation for Electric Drives’.

Read more...
Sustainability is transforming fluid power
Editor's Choice Motion Control & Drives
Sustainability is reshaping the future of fluid power. With the growing demand for cleaner, more efficient technologies and tightening global regulations, fluid power systems are being re-engineered for higher efficiency, lower emissions and reduced material usage.

Read more...
The power of water
Editor's Choice Electrical Power & Protection
The Alpenglow Hy4 is the world’s first water-based hydrogen combustion engine, offering a convincing alternative to traditional battery-electric vehicles and established hydrogen fuel cell designs.

Read more...
Optimising purification for green hydrogen production
Parker Hannifin - Sales Company South Africa Editor's Choice Electrical Power & Protection
Parker Hannifin delivers advanced purification and thermal management components that enhance green hydrogen production.

Read more...
A new chapter in geothermal engineering
Editor's Choice Electrical Power & Protection
The town of Geretsried in southern Germany has become a focal point in the global shift toward renewable energy. While the world’s attention often turns to wind turbines and solar panels, a quieter but no less powerful force is at work deep beneath the surface, geothermal energy.

Read more...
Harnessing the ocean with wave energy
Editor's Choice Electrical Power & Protection
Wave energy is emerging as one of the most promising yet underutilised renewable sources. Tapping into the rhythmic, predictable power of ocean waves, this technology offers a clean, reliable alternative to fossil fuels and a valuable complement to wind and solar energy.

Read more...
Leading the way to the all-electric mine
ABB South Africa Editor's Choice IT in Manufacturing
Decarbonising the mining sector requires more than just new technology. ABB eMine provides a strong portfolio of electrification and automation solutions, consulting, partnerships and technology applications to support mining operations to reduce emissions and achieve operational cost savings and superior efficiency.

Read more...
Speeding up warehouse automation
Rockwell Automation Editor's Choice Motion Control & Drives
Bastian Solutions designs and delivers world-class material handling systems. The company was engaged by a high-end global fashion brand to implement a new warehouse system. Bastian used Rockwell Automation Emulate3D digital twin software to test the system before it was installed and went live.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved