IT in Manufacturing


What is the current state of additive manufacturing?

March 2021 IT in Manufacturing

Over the next five to ten years, additive manufacturing (AM) will become the standard manufacturing technology. Innovative designs enabled by generative design methods based on AI algorithms and the use of new materials will become common when removed from the constraints of traditional manufacturing processes. Additionally, these designs will be part of a continuously improving process of production efficiency and optimisation. AM and its complementary technologies will allow for more consolidation of individual parts, and a more streamlined manufacturing process overall, with these designs requiring less assembly time and reduced maintenance in the field.

One area where AM is evolving significantly is in direct manufacturing. This where, due to the advancement of the next generation of 3D printing machines, AM is beginning to be adopted for more volume production capacities. As more companies produce printed parts in larger volumes, and at scale, the price points for additive technology and materials continues to drop. Moreover, as printing techniques and part resolution continuously improve, and newly developed ‘digital’ materials consisting of tuneable micro-structures emerge, this will usher in a new dimension of applied material science and advanced production processes.

Generative design is changing the additive manufacturing process

Generative design is an iterative process that generates multiple design outputs that meet predefined constraints and requirements for fit, form and function. One of the primary benefits of generative design is that it is a fast method for exploring multiple design possibilities. For example, this design technique allows many hundreds, if not thousands, of possible solutions to be evaluated in a relatively short timeframe.

This is possible because generative design is based on AI. Using machine learning techniques and algorithms developed for iterative pattern matching, many variations of designs can be developed based on a primary set of constraints, allowing the designer to evaluate many designs to find the optimal one that fits the requirements. This generative design process is made to order for AM. Engineers can focus on a variety of constraints, such as light-weighting, optimal strength to weight ratio, fit, and a number of functional requirements that best meet the design requirements.

Today’s AM technology, such as with leading PLM solution providers, is leading the way with comprehensive generative design solutions developed specifically for the AM process, from part design to manufacturing. These AM solutions approach the process from a lifecycle perspective, starting with the specific part requirements for specific industries, such as automotive, aerospace, medical equipment, and even consumer goods. The lifecycle begins with discovering the right material and the application with in-silico materials simulation engineering to find the optimal compound. Next is function-driven generative design, followed by the manufacturing process definition and production planning of the part.

Advanced simulation technology validates AM produced parts

Simulations of the additive process are crucial in assessing the finished part’s overall quality and conformance to design requirements. Much of the attention has been focused on powder bed metal fusion processes, as industries work to bring certified parts to market. These simulation models are primarily based on finite element analysis methods and rely on predefined libraries (based on scanning strategies) or thermal strains that function as inputs to relatively fast computations of the part distortions. These simulation methods are reasonably simple to use and do not require the user to have deep knowledge in the physics of the simulation.

Another approach relies on a fully thermo-mechanical solution to the simulation process. Scanning technologies can be used in thermo models to predict the thermal profile as the part is being built, layer by layer. The thermal profiles then drive the mechanical simulations (finite element analysis) for a more accurate prediction of part distortions. The primary advantage of this method is that the fidelity of the simulation can be accurately controlled.

Multiple machines, processes and materials define the AM environment

AM has witnessed strong growth, especially as its focus has shifted from prototypes to functional production parts with an increasing capability to scale and increase volume. However, there remain in place a set of critical production challenges for the industry, including build repeatability, process stability and yield rates. More advanced digital tools are helping to resolve some of these issues: generative design, functional lattices, build planning hardware integration, thermal distortions, and shape compensation.

The AM environment today has expanded significantly in terms of the multiple techniques and technologies that have been established to meet the range of industry requirements and material needs. In a powder bed fabrication process, for example, thermal energy selectively fuses regions of a powder bed. Conversely, in a binder jet process, a liquid bonding agent is deposited to join the material powder. In a direct energy deposition process, a nozzle that is mounted on a multi-axis arm deposits molten material, and in photo polymerisation, liquid photopolymer is selectively cured by light-activated polymerisation. While each process family uses a different raw material supply form (e.g. powder, wire feed, liquid resin, ink), each process family manufactures parts consisting of different material types. For example, powder bed fabrication produces metallic and plastic parts; binder jetting produces metallic, plastic, and ceramic parts; material extrusion produces plastic and composite parts. AM will continue to expand production and fabrication of parts across multiple industries using a full range of technologies and science.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Sustainable energy management
Siemens South Africa IT in Manufacturing
Utilising its innovative ONE approach technology, Siemens provides complete transparency on resource consumption and offers data-driven optimisation recommendations for sustainable energy management.

Read more...
Paving the way for a carbon-neutral future in South Africa
IT in Manufacturing
At ABB Electrification, we believe the infrastructure of the future must do more than support daily operations, it must anticipate them. We are committed to building intelligent systems that connect and optimise infrastructure across sectors.

Read more...
Africa’s hidden AI advantage
IT in Manufacturing
Through my work implementing AI systems across three continents, I’ve become convinced that Africa’s unique context demands urgent AI adoption. Successful implementation requires local expertise to understand resource constraints as design parameters to create the innovations that make technology truly work under real-world conditions.

Read more...
Siemens Xcelerator empowers space-tech pioneer, Skyroot Aerospace
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software has announced that Skyroot Aerospace, a leading private space launch service company in India, has adopted Polarion software from the Siemens Xcelerator portfolio to digitally transform its software development processes and enhance efficiency as it aims to accelerate access to space for its customers worldwide.

Read more...
Water is running out, is your ESG strategy ready?
IT in Manufacturing
Water is one of the most critical yet undervalued resources in modern business. Water stewardship asks businesses to understand their water footprint across the entire value chain and to engage with others who share the same water resources.

Read more...
Cybersecurity in 2025: Six trends to watch
IT in Manufacturing
Rockwell Automation’s?10th?State?of?Smart?Manufacturing report finds that cybersecurity risks are a major, ever-present obstacle, and are now the third-largest impediment to growth in the next 12?months.

Read more...
The state of the smart buildings market in 2025
IT in Manufacturing
Smart buildings are entering a transformative phase, driven by sustainability goals, technological innovation and evolving user expectations. According to ABI Research’s latest whitepaper, the sector is undergoing a strategic overhaul across key areas like retrofitting, energy efficiency, data-driven operations and smart campus development.

Read more...
Digital twin for Bavaria’s National Theatre
Siemens South Africa IT in Manufacturing
Siemens and the Bavarian State Opera are digitalising the acoustics in Bavaria’s National Theatre in Munich, Germany. The result is a digital twin that simulates sound effects, orchestral setups and venue configurations in a realistic 3D acoustic model so that musicians, the director and conductors can assess a concert hall’s acoustics even before the first rehearsal.

Read more...
How AI can help solve South Africa’s water crisis
IT in Manufacturing
Climate change, ageing infrastructure, pollution and unequal access are putting intense pressure on the country’s water systems. A powerful question arises: “Can artificial intelligence help us change course?”

Read more...
Backup has evolved, but has your strategy?
IT in Manufacturing
With cyber threats rising and compliance standards tightening, South African organisations are under growing pressure to revisit their data protection strategies. The era of treating backups as a box-ticking exercise is over.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved