IT in Manufacturing


What is the current state of additive manufacturing?

March 2021 IT in Manufacturing

Over the next five to ten years, additive manufacturing (AM) will become the standard manufacturing technology. Innovative designs enabled by generative design methods based on AI algorithms and the use of new materials will become common when removed from the constraints of traditional manufacturing processes. Additionally, these designs will be part of a continuously improving process of production efficiency and optimisation. AM and its complementary technologies will allow for more consolidation of individual parts, and a more streamlined manufacturing process overall, with these designs requiring less assembly time and reduced maintenance in the field.

One area where AM is evolving significantly is in direct manufacturing. This where, due to the advancement of the next generation of 3D printing machines, AM is beginning to be adopted for more volume production capacities. As more companies produce printed parts in larger volumes, and at scale, the price points for additive technology and materials continues to drop. Moreover, as printing techniques and part resolution continuously improve, and newly developed ‘digital’ materials consisting of tuneable micro-structures emerge, this will usher in a new dimension of applied material science and advanced production processes.

Generative design is changing the additive manufacturing process

Generative design is an iterative process that generates multiple design outputs that meet predefined constraints and requirements for fit, form and function. One of the primary benefits of generative design is that it is a fast method for exploring multiple design possibilities. For example, this design technique allows many hundreds, if not thousands, of possible solutions to be evaluated in a relatively short timeframe.

This is possible because generative design is based on AI. Using machine learning techniques and algorithms developed for iterative pattern matching, many variations of designs can be developed based on a primary set of constraints, allowing the designer to evaluate many designs to find the optimal one that fits the requirements. This generative design process is made to order for AM. Engineers can focus on a variety of constraints, such as light-weighting, optimal strength to weight ratio, fit, and a number of functional requirements that best meet the design requirements.

Today’s AM technology, such as with leading PLM solution providers, is leading the way with comprehensive generative design solutions developed specifically for the AM process, from part design to manufacturing. These AM solutions approach the process from a lifecycle perspective, starting with the specific part requirements for specific industries, such as automotive, aerospace, medical equipment, and even consumer goods. The lifecycle begins with discovering the right material and the application with in-silico materials simulation engineering to find the optimal compound. Next is function-driven generative design, followed by the manufacturing process definition and production planning of the part.

Advanced simulation technology validates AM produced parts

Simulations of the additive process are crucial in assessing the finished part’s overall quality and conformance to design requirements. Much of the attention has been focused on powder bed metal fusion processes, as industries work to bring certified parts to market. These simulation models are primarily based on finite element analysis methods and rely on predefined libraries (based on scanning strategies) or thermal strains that function as inputs to relatively fast computations of the part distortions. These simulation methods are reasonably simple to use and do not require the user to have deep knowledge in the physics of the simulation.

Another approach relies on a fully thermo-mechanical solution to the simulation process. Scanning technologies can be used in thermo models to predict the thermal profile as the part is being built, layer by layer. The thermal profiles then drive the mechanical simulations (finite element analysis) for a more accurate prediction of part distortions. The primary advantage of this method is that the fidelity of the simulation can be accurately controlled.

Multiple machines, processes and materials define the AM environment

AM has witnessed strong growth, especially as its focus has shifted from prototypes to functional production parts with an increasing capability to scale and increase volume. However, there remain in place a set of critical production challenges for the industry, including build repeatability, process stability and yield rates. More advanced digital tools are helping to resolve some of these issues: generative design, functional lattices, build planning hardware integration, thermal distortions, and shape compensation.

The AM environment today has expanded significantly in terms of the multiple techniques and technologies that have been established to meet the range of industry requirements and material needs. In a powder bed fabrication process, for example, thermal energy selectively fuses regions of a powder bed. Conversely, in a binder jet process, a liquid bonding agent is deposited to join the material powder. In a direct energy deposition process, a nozzle that is mounted on a multi-axis arm deposits molten material, and in photo polymerisation, liquid photopolymer is selectively cured by light-activated polymerisation. While each process family uses a different raw material supply form (e.g. powder, wire feed, liquid resin, ink), each process family manufactures parts consisting of different material types. For example, powder bed fabrication produces metallic and plastic parts; binder jetting produces metallic, plastic, and ceramic parts; material extrusion produces plastic and composite parts. AM will continue to expand production and fabrication of parts across multiple industries using a full range of technologies and science.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Looking into the future of machine vision
Omron Electronics IT in Manufacturing
Artificial intelligence (AI) is driving a significant transformation in all areas of industrial automation, and machine vision is no exception. Omron’s AI-powered machine vision systems seamlessly integrate state-of-the-art algorithms, enabling machines to analyse and interpret visual data meticulously.

Read more...
Driving digital transformation in the truck industry
Siemens South Africa IT in Manufacturing
Tatra Trucks, a leading truck manufacturer in Czechia, has adopted the Siemens Xcelerator portfolio of industry software including Teamcenter software for product lifecycle management and the Mendix low code platform to help increase production volume and strengthen its ability to manufacture vehicles that meet specific customer requirements.

Read more...
Opinion piece: Digital twins in manufacturing – design, optimise and expand
Schneider Electric South Africa IT in Manufacturing
Digital twin technology can help create better products, fast. It can also transform the work of product development. This strong statement from McKinsey reinforces how far digital twins have come in manufacturing.

Read more...
Asset tracking is key to driving operational excellence and sustainable growth
Schneider Electric South Africa IT in Manufacturing
Asset tracking plays a critical role in the success of industrial businesses. By effectively managing and monitoring assets, companies can optimise their operations, ensuring that resources are used efficiently. This leads to improved productivity and reduced costs.

Read more...
Siemens democratises AI-driven PCB design for small and medium electronics teams
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software is making its AI-enhanced electronic systems design technology more accessible to small and mid-sized businesses with PADS Pro Essentials software and Xpedition Standard software.

Read more...
Predicting and preventing cyber-attacks with AI and generative AI
IT in Manufacturing
The speed at which cyber threats are evolving is unprecedented. As a result, companies need to implement state-of-the-art technology to protect their data and systems.

Read more...
Real-world lessons in digital transformation
IT in Manufacturing
Synthesis has helped businesses across multiple industries with their digital transformation by solving their unique integration challenges.

Read more...
Enhancing cyber security for industrial drives
Siemens South Africa IT in Manufacturing
The growing connection between production networks and office networks as part of IT/OT integration and the utilisation of IoT have many benefits for industrial companies. At the same time, they also increase the risk of cyber threats. Siemens ensures that your know-how and plants are protected at all times.

Read more...
Immersion cooling systems for data centres
IT in Manufacturing
The demand for data centres in Africa is growing. The related need for increasing rack densities brings with it escalating cooling requirements.

Read more...
Transforming pulp and paper with automation and digitalisation
ABB South Africa IT in Manufacturing
The pulp and paper industry in South Africa is undergoing a significant transformation from traditional manual processes to embracing automation technologies. Automation in pulp and paper mills aims to improve various production stages, from raw material preparation to final product creation.

Read more...