Analytical Instrumentation & Environmental Monitoring


Optimising DeNOx plants with the in-situ gas analyser

February 2021 Analytical Instrumentation & Environmental Monitoring

New environmental legislation and companies’ self-imposed sustainability obligations have contributed to a marked increase in environmental awareness. This is especially so when it comes to the emission of hazardous substances and environmental pollution. Many industries are, therefore, taking steps to reduce or prevent these dangerous emissions. SICK Automation’s innovative in-situ gas analyser, GM32, helps reduce emissions in DeNOx plants.

The analyser measures nitric oxide (NO), nitrogen dioxide (NO2), ammonia (NH3) and sulphur dioxide (SO2), as well as pressure and temperature, directly inside the plant’s process gas stream. The analyser unit is equipped with a gas permeable probe, which is positioned inside the duct. The direct measurement enabled from this location facilitates a short response time, leading to fast measuring results.

The analyser is ideal for use with selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR), two of the accepted measures used to reduce NOx emissions.

Cement industry case study

To comply with local emission regulations, HeidelbergCement Group in southwestern Germany invested in an SCR plant to supplement its existing SNCR solution.

The main difference between the two technologies is the use of a catalyst. The SNCR is installed in the riser duct or calciner of the rotary kiln at temperature ranges of 900°C to 1000°C. The SCR, on the other hand, consists of a specific number of catalyst layers that operate at approximate temperatures of 300°C to 350°C. They can be placed in the high-dust raw gas stream or before the main stack in the low-dust gas stream.

The device would be placed at the SCR inlet between the ammonia water injection nozzles and the catalyst. The advantages of having the measuring location at the inlet is simultaneously measuring the NH3 and NO entering the SCR and, in this instance, NO from the combustion process can also be measured. To achieve sufficient SCR control, the analyser had to meet two requirements. It needed to have fast response times for efficient control of the ammonia water injection, and have extended maintenance-free intervals because of the challenging conditions in which it operates.

HeidelbergCement Group contacted SICK for a solution and the GM32, designed to cope with high dust, high temperatures and vibrations, was selected as the ideal solution. It was agreed that the analyser would be installed for a 12-month test period from March 2019 to March 2020.

The gas analyser and filter installed required checking, cleaning and maintenance only every nine to twelve months. Stack movements are possible due to higher temperatures and temperature fluctuations at the measuring station, and are compensated for with the analyser’s auto alignment correction. This continuously aligns the light beam during operation to ensure stable, reliable measurement.

Compared to other measuring systems that require frequent test gas calibrations, the integrated filters for zero and span check automatically compensate drifts and ensure a correct and accurate measurement. This means less frequent test gas calibration and lower operational expenditure. Using the SICK Meeting Point Router remote service, onsite tests were conducted and a large amount of additional process data was collected and evaluated.

The test period proved that the analyser has a stable reaction time of less than 20 seconds without the need for cleaning or maintenance. The results show that with a delay of 2 to 17 minutes (depending on the measuring component) a continuous emission monitoring system alone is not sufficient for DeNOx process control.

The 12-month test was successful and, subsequently, another HeidelbergCement plant in Germany equipped its DeNOx system with two GM32 analysers for SCR control. The two devices were commissioned in June 2020.

How the GM32 works

Using the wavelength-specific light absorption by the gas mixture on the active measuring path, the sender/receiver unit determines the concentration of the gas components present. UV light sent from the sender/receiver unit passes the active measuring path of the GPP probe and is reflected by a triple reflector at the end of the probe.

The permeable filter element – the heart of the gas permeable probe – keeps all dust outside of the measuring path, while the gas permeates quickly through the pores, ensuring the required fast response time. The GM32 uses the DOAS (differential optical absorption spectroscopy) principle, where the absorption lines of specific gases in a particular wavelength range are evaluated.

With its GM32 in-situ gas analyser, SICK Automation has proven that companies in the cement industry can maintain a clean environment, effectively supporting climate protection.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Elevating mining separation processes through precision instrumentation
Endress+Hauser South Africa Analytical Instrumentation & Environmental Monitoring
In mining operations, the quest for efficiency and productivity is key. There is an urgent need for innovative solutions to enhance the performance of extraction processes while balancing operational costs and environmental impact.

Read more...
Alfa Laval launches next generation
Analytical Instrumentation & Environmental Monitoring
Alfa Laval has launched Clariot, a next generation, AI-based condition monitoring solution, precision-built for hygienic process equipment to deliver more accurate analysis and support.

Read more...
The next generation in metal sorting
Mecosa Analytical Instrumentation & Environmental Monitoring
In the metal recycling industry, companies are increasingly challenged to not only improve the efficiency of their processes but also to raise the quality and purity of the sorted materials to new levels. By integrating proven spectral analysis technology into its market-leading REDWAVE XRF sorting system, REDWAVE is unlocking new opportunities for metal recycling, particularly in aluminium recovery.

Read more...
Ensuring clean and safe water
Endress+Hauser South Africa Analytical Instrumentation & Environmental Monitoring
Endress+Hauser’s comprehensive range of disinfection sensors are designed to monitor and control disinfectant levels in water treatment processes.

Read more...
Anton Paar launches inline refractometers for precision Brix monitoring
Anton Paar Analytical Instrumentation & Environmental Monitoring
[Sponsored] Anton Paar has introduced innovative inline refractometers that are designed for continuous Brix concentration monitoring in metalworking machines, fruit and vegetable processing and other industrial processes.

Read more...
Supporting fast, safe helicopter service across Sweden
ATEQ South Africa Analytical Instrumentation & Environmental Monitoring
In an environment with high risks and fierce competition, Storm Heliworks’ fleet of eight helicopters operates on assignments throughout Scandinavia. Maintenance is critical, and the company recently invested in a battery charger analyser from ATEQ Aviation.

Read more...
WearCheck introduces advanced Legionella testing to safeguard water quality
Wearcheck Analytical Instrumentation & Environmental Monitoring
WearCheck Water has expanded its expertise in water analysis with the introduction of Legionella pneumophila detection and enumeration. This positions the company at the forefront of water and surface safety monitoring, ensuring businesses, industries, and public institutions can proactively manage legionella contamination risks.

Read more...
Silo weighing made easy - new mounting kit for load cells
Analytical Instrumentation & Environmental Monitoring
The PR 6003 mounting kit features fast commissioning in demanding applications in industrial silo weighing. It combines maximum accuracy with maximum safety in a compact system.

Read more...
Inline beverage analyser leverages advanced multi-parameter technology
Analytical Instrumentation & Environmental Monitoring
[Sponsored] The Cobrix 7501/7601 inline beverage analyser leverages advanced multi-parameter technology to enhance quality control in carbonated soft drink production.

Read more...
Smart weighing boosts Bayer’s automation
Analytical Instrumentation & Environmental Monitoring
he new supply centre of the agricultural chemical and pharmaceutical company Bayer in Hangzhou integrates weighing technology of Minebea Intec for precise mixing and homogenisation in Zone 2 hazardous areas.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved