Analytical Instrumentation & Environmental Monitoring

Gas analysis in power transformers

September 2020 Analytical Instrumentation & Environmental Monitoring

Power transformers are generally regarded as ‘safe’ pieces of equipment. However, in practice, they can present some quite serious risks. This is due to the large quantities of oil that they contain which is in contact with the high voltage elements. As a consequence of temperature changes and in many cases overheating of the transformer core, various gases can be generated within the transformer oil system. These will tend to accumulate in the space above the oil in the reservoir – which is usually filled with nitrogen. The gases generated include several hydrocarbons and also hydrogen.

During daytime hours the increase in temperature causes the gas space pressure to increase while at the same time the oil expands. Some of this gas dissolves in the oil. During the night, the process reverses: the temperature drops, the oil contracts and the gas space pressure drops. Ideally, all the excess gas would return to the gas space, but frequently an excess remains in the oil which is then considered to be supersaturated. Any mechanical disturbance such as the sudden starting of a pump, a lightning strike, or movement within the windings as a result of a sudden large increase in current, could release the excess gas as bubbles in the oil.

Typical gases that appear in transformers are hydrogen, methane, ethane, ethylene and acetylene. These begin to form at specific temperatures and dissolve within the insulation oil of a power transformer. The types and quantities of the gases that form will depend on the nature of the conditions. The first to appear are hydrogen and methane, which begin to form in small amounts at around 150°C. Thermal decomposition of cellulose materials begins at about 100°C and these processes produce hydrogen, carbon monoxide, carbon dioxide, methane and oxygen. This is a compelling reason why transformers should not be operated above 90°C.

Explosion risk and the Gen5 System

A large percentage of transformer failures are caused by ignition and explosion of these gases. Dissolved gas analysis (DGA) should therefore be a primary maintenance routine for transformer operators. Traditionally, this is carried out by technicians that visit transformers on a regular basis and carry out tests to identify the presence of gases dissolved in the transformer oil. This is an expensive and frequently unreliable procedure. Due to the decreased availability of personnel taking DGA samples – a situation aggravated by the COVID-19 pandemic – many utilities now choose real-time monitoring of transformer dissolved gases.

RTS Africa Technologies (RTS) is able to provide DGA analytical instruments designed specifically for real-time monitoring of hydrogen in transformer oil systems.

Tshwane-based RTS is an agent for US-based H2scan, a leading provider of hydrogen sensors and technologies for utilities, which recently announced the increased availability of its Gen5 System, developed specifically for transformer oil DGA and monitoring.

The Gen5 System enables real-time hydrogen monitoring for reduced risk of explosion and catastrophic failure and is ideal for use in distribution transformer applications, including those located in populated areas such as suburbs, under streets and in industrial sites. The system delivers high accuracy sensing at an affordable price with over 15 000 units already installed.

The sensor system works with oil immersed transformers and offers real-time, or step-change monitoring to report hydrogen levels as they fluctuate. It can track hydrogen levels in the transformer oil from 25 ppm to 5000 ppm at oil temperatures up to 105°C. The real-time monitoring is ideal for smaller transformers where power overloads can cause higher temperatures that quickly drive up hydrogen levels.

The Gen5 System incorporates H2scan’s patented auto-calibration technology, requiring no maintenance or recalibration for up to 10 years. Total install or retrofit time is less than one hour. The instrument is IP68 rated and can withstand 14 days submersion in water to a depth of up to 10 metres, making it ideal for underground vault transformers. In the midst of the COVID-19 pandemic, the Gen5 System is a game changer for utilities wanting to eliminate manual sampling and substation visits by maintenance crews.


Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Flexibility for disinfection measuring points
April 2021, Endress+Hauser South Africa , Analytical Instrumentation & Environmental Monitoring
Endress+Hauser’s new modular Flowfit CYA27 flow assembly enables measurement of up to six parameters in process and drinking water.

Alkylation processes in petroleum refineries
April 2021, Morton Controls , Analytical Instrumentation & Environmental Monitoring
The SensoTech LiquiSonic is an inline analytical system for determining the concentration of binary liquids directly in the production process.

African Hydrogen Partnership to foster green hydrogen
April 2021, RTS Africa Technologies , News
The African Hydrogen Partnership was set up as a development and financing forum to realise a hydrogen-based green energy vision across Africa.

A safe and easy way to check water quality
March 2021, Endress+Hauser South Africa , Analytical Instrumentation & Environmental Monitoring
Ready-to-use water analysis panels from Endress+Hauser ensure water monitoring with minimum effort and maximum reliability.

ABB urges adoption of high-efficiency motors to combat climate change
April 2021, ABB South Africa , Analytical Instrumentation & Environmental Monitoring, Electrical Power & Protection
Global electricity consumption could be reduced by 10%.

Loop-powered watercut meter
May 2021, SECO Process Instrumentation , Analytical Instrumentation & Environmental Monitoring
The Easz-1 oil/water monitor is a highly accurate online analyser that is installed in a pipe and can be used as a BS&W (basic sediment and water) monitor, or a watercut meter.

Optimising DeNOx plants with the in-situ gas analyser
February 2021, SICK Automation Southern Africa , Analytical Instrumentation & Environmental Monitoring
SICK Automation’s innovative new GM32 in-situ gas analyser helps reduce emissions in DeNOx plants.

Legrand’s Netatmo smart weather stations
November 2020, Legrand , Analytical Instrumentation & Environmental Monitoring
Legrand’s Netatmo smart home weather stations are an easy and efficient way to understand and monitor a home’s indoor and outdoor environment.

Cooling VSDs with inertial spin filters
November 2020, RTS Africa Technologies , Motion Control & Drives
RTS inertial spin filter units are compact and easy to install and RTS Africa offers full service from conceptual design to ongoing support as required.

The challenges of online trace measurement
November 2020, Endress+Hauser South Africa , Analytical Instrumentation & Environmental Monitoring
The power industry has extremely high expectations in terms of measuring sensitivity, particularly with regard to the key parameter silica.