Sensors & Transducers


A practical guide to loadcell weighing systems

1 April 2020 Sensors & Transducers

Loadcells are a key component when it comes to ensuring that the manufacture of consumer goods, food and pharmaceuticals, amongst others, remains accurate and delivers consistent product quality and packaging.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.


Figure 10.

In principle, loadcells are not complex devices, however they do require some special attention when being installed or maintained. Many of these requirements are common knowledge, yet get overlooked during installation and commissioning with direct impact on the accuracy and repeatability of readings from a loadcell system.

The aim of this article is not just to remind users about these, but in addition to question if changes made to the system over time have added any of these items as risk factors to the performance of the current system.

Are loadcells still the best choice for bulk vessel measurements?

Bulk vessel measuring systems have seen some dramatic changes in technology over the past two decades with the development of radar and ultrasonic level measurement devices with increasingly advanced algorithms. Let’s examine their requirements in two sets, the first is physical (mechanical) and the second, electrical.

1. Support plates mounting to the loadcell need to be level or planar and the plates below and above the loadcell need to be co-planar as indicated in Figure 1.

2. Mounting kits used should be suitable for both the loadcell and the application, and be able to compensate for any misalignment of support plates as indicated in Figure 2.

3. Support plates must be rigid and non-deformable as indicated in the example of Figure 3.

4. Pay attention to the load direction indicated on the loadcell body, and install accordingly. Remember that a loadcell can be installed ‘upside down’ as long as the load is applied in the indicated direct direction. Figure 4 indicates these two installation possibilities.

5. Remember that structures with 4 supports will not distribute the load uniformly and that 90% of the load can easily be distributed on just 3 of the legs. Keep this in mind when calculating the capacity of the loadcells as indicated in Figure 5.

6. Preferably do not exceed 80% of the loadcell maximum rated capacity with respect to maximum load to be applied, or the designed load area, as indicated in Figure 6.

7. The freer a structure is the more accurate its readings can be. Make sure that any piping that is connected naturally aligns to the vessel so as not to add strain to it where it is not possible to use free couplings or flexible hoses, which are recommended to ensure free movement as indicated in Figures 7 and 8.

8. Pipe support structures on pipe sections directly connected to the measured vessel need to be located at least 40 times the diameter of the pipe away from the vessel as shown in Figure 9.

9. An easy test for correct mechanical installation is to zero the system after installation, apply a load of at least 20% of rated weight, remove the load and confirm that the value returns to zero. Repeat a few times to confirm stability.

10. When using weighing systems with multiple loadcells, it is recommended to place constraints against both lateral and horizontal forces, which allows loadcells to operate correctly, avoiding potentially damaging stresses. In bulk vessels, examples include anti-tilt constraints as shown in Figure 10, and leg supports as indicated in Figure 11. Anti-tilt constraints in outdoor applications where accidental impact from moving vehicles can occur should also be considered, depending on the application environment. Structures with legs need these to be connected to each other or otherwise properly secured to prevent flexing under load, which can cause lateral force on the loadcells.

With all these preparation requirements, it is tempting to give preference to radar or ultrasonic sensors that require only a single hole at the top of the vessel and a few test measurements to get them up and running. In a future article, we will look into the electrical requirements and discuss the niche that loadcells have carved for themselves in the bulk measurement environment.

To learn more about weighing system developments, be sure to join the world’s largest weighing community online at Weighing Systems 4.0 on Linkedin.

*Images courtesy of Laumas


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Smart alternative for float switches
ifm - South Africa Sensors & Transducers
With the LI level sensor, you can reliably detect leakages and point levels on a permanent basis. The capacitive measuring system has no moving parts. Malfunction or maintenance issues due to deposits on the mechanical parts are therefore eliminated.

Read more...
Telco sensors in the pulp and paper industry
Gail Norton Instrumentation Sensors & Transducers
The pulp and paper industry poses a major problem for most photoelectric sensors. The high level of contamination in these dusty, dirty and grimy environments makes it impossible for most competing sensors to operate and sense reliably and efficiently.

Read more...
Precision acoustic imagers
Comtest Sensors & Transducers
To help users identify and localise ‘mechanical areas of interest’ within short timeframes, Comtest has added a unique new feature to Fluke’s ii910 precision acoustic imagers.

Read more...
Efficiency and precision with IO-Link sensors
RS South Africa Sensors & Transducers
RS South Africa has its own brand known as RS PRO, which offers a choice of over 88 000 products across all industries and technologies. The guaranteed quality and breadth of this range make RS PRO the smart choice for your business.

Read more...
Smart alternative for float switches
ifm - South Africa Sensors & Transducers
With the LI level sensor, you can reliably detect leakages and point levels on a permanent basis. The capacitive measuring system has no moving parts. Malfunction or maintenance issues due to deposits on the mechanical parts are therefore eliminated.

Read more...
Optical fork sensor series
Gail Norton Instrumentation Sensors & Transducers
The OFS series consists of self-contained optical fork sensors that are housed in a durable, U-shaped aluminum housing, which operates in through-beam mode.

Read more...
In-line process transmitter to optimise sterile processes
WIKA Instruments Sensors & Transducers
The new model DMSU22SA in-line process transmitter from WIKA helps to optimise sterile processes in the pharmaceutical and food industries, with less energy consumption, less cleaning effort ,and more safety.

Read more...
Automated clean-in-place
Endress+Hauser South Africa Sensors & Transducers
A clean-in-place (CIP) process is integral to a food and beverage producer’s responsibility to deliver safe, high-quality products to consumers. However, as industries worldwide shift focus towards sustainability, CIP procedures face new challenges.

Read more...
Signal conditioning is the protective armour between plant and field
Omniflex Remote Monitoring Specialists Sensors & Transducers
Measurement and control of physical properties are the foundation of all critical industrial technologies. Ian Loudon, international sales and marketing manager at remote monitoring specialist, Omniflex explains the challenges of industrial signal conditioning and the importance of safety engineering.

Read more...
Precise detection of complex rotational movements
Beckhoff Automation Sensors & Transducers
The EP3751-0260 EtherCAT Box module by Beckhoff connects an acceleration sensor with an inertial measurement unit - a gyroscope. This provides accurate detection of acceleration and rotational motion in addition to shock, vibration and tilt measurement, both as preprocessed values and as raw sensor data.

Read more...