Motion Control & Drives


Actualising sustainability with Sibanye-Stillwater

Technews Industry Guide: Sustainable Manufacturing 2023 Motion Control & Drives

Energy Drive is proud to announce that Sibanye-Stillwater is predicted to achieve an energy saving of 60% from August 2021 to August 2031. This is made up of 374,02 GWh from its Shaft 8, Shaft 2 and the upcoming Shaft 5. This equates to 393,7 M kg of CO2, SOx, and NOx emissions reduced, 519,9 Megalitres of water saved, and 256,6 M kg less coal and ash.

The site uses multiple medium voltage (MV) ventilation fans to provide airflow to the mine. The two vent fans at the shaft are directly coupled to two 2240 kW induction motors – a standard squirrel cage motor and a slip ring motor. These fans ran in a duty/standby fashion (common of a ventilation fan system), with one fan running continuously to provide airflow to the shaft. The second fan was used as a standby fan to ensure redundancy. The fans were controlled from the mine’s central Wonderware scada network using inlet guide vanes (IGVs). A third-party energy partner managed the clipping schedule on behalf of the mine, which used the IGVs to reduce airflow during peak times.

When Sibanye and Energy Drive started collaborating, this shaft was quickly identified as a prime candidate for energy savings. Energy Drive engineers saw the opportunity to run both fans together to provide the same airflow as one fan.

While counterintuitive, this concept would allow Energy Drive to run each fan at a much lower speed. Each fan would provide a lower airflow, giving a substantial decrease in power demand. Additionally, running two fans with fully open IGVs allows the fans to return closer to their best operating point (BOP), allowing for greater efficiency. Using the mine’s suggested flow rates, the Energy Drive engineers predicted an energy saving of 60%.

The first challenge to overcome was one of space. Energy Drive’s solutions are typically mobile and self-contained. The VSDs intended for use at the mine were too tall for the typical high cube container, prompting project engineers to consider other solutions. With the benefit of being easily transportable and a familiar footprint for logistics companies – shipping containers were therefore utilised for this purpose. The decision was taken to use the same base dimensions as the 12 merer container, but with a bespoke e-Unit constructed on it. This allowed Energy Drive to accommodate the tall VSDs, while still having an easily mobile and self-contained solution.The electrical solution provided the mine with two modes of operation: VSD operation, and running the fans via their original DOL starters, which is achieved using ring main units (RMUs).

When the e-Unit was completed, a cold-commissioning of the VSDs was performed, and the unit was sent to site. It could then be placed down into its final location, and all the final terminations and cable work could be performed.

The communication between Energy Drive and the site PLC is crucial, as Energy Drive needs to give feedback to the mine on the state of the VSD and receive input from the mine on clipping/non-clipping modes of operation. The Energy Drive PLC can then also act to keep IGVs fully open when under VSD control, to maximise savings for the site.

A data and analytics platform allows Energy Drive engineers to have a live view of both the VSD health and the health of system communications. In the event of anything out of the ordinary, this data is at the fingertips of engineers who can inform mining personnel and dispatch technicians when needed.

A critical part of the commissioning process was establishing a flow baseline for the mine. This was done in collaboration with a third party, who performed a comprehensive set of pitot tube tests to determine the pressure when on IGV control. These tests were done during the clipping and non-clipping stages of operation. The VSD was then tested at three operating speeds, 30 Hz, 27 Hz and 24 Hz. Once all these tests had been performed, a comprehensive comparison between the flows while under IGV control and the flows while under VSD control could be made. The report showed that while under VSD, an operating speed of 27 Hz on each fan would provide the mine with the same flow received during non-clipping operations. Both fans could be run at 24 Hz during clipping times to achieve the same flow rates.

With an original baseline of 1710,3 kW, the fans now run at 605,75 kW. In fact, the results of this project have been so successful that Energy Drive was awarded the Energy Award for Industrial Energy Project of the Year by The Southern African Energy Efficiency Confederation (SAEEC) for 2021.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

A world first in maintenance
Motion Control & Drives
Lutz Pumpen has therefore developed a filling tool called Lutz Lube Drive, which considerably simplifies the maintenance process. The idea is that a commercial cordless screwdriver becomes the motor of a pump tube.

Read more...
The future of robotics
Motion Control & Drives
Research into robotics and autonomy uncovers some of the up-and-coming industrial uses and applications within the sector, including for automotives and logistics, as well as for personal and commercial use.

Read more...
Customised electromechanical systems for Africa’s toughest industrial environments
Motion Control & Drives
Hexagon Electrical, a South African-based manufacturer of specialised electromechanical equipment, is reinforcing its position as a leading custom solutions provider to the mining, utilities, industrial and renewable energy sectors.

Read more...
Epiroc strengthens productivity and sustainability
Motion Control & Drives
Epiroc is accelerating the transformation towards more productive and sustainable mining operations with the introduction of the new Minetruck MT22. The new 22-ton underground truck is designed for mining operations with small drift sizes, delivering increased effectiveness, reduced exhaust emissions, lower fuel consumption and extended service intervals.

Read more...
Hoist gives better load control
Motion Control & Drives
An important criterion for lifting equipment is that it is correctly loaded and balanced in order to avoid mechanical failures and accidents. More importantly, operator safety is enhanced as a result of correct load control, which reduces the possibility of damage to the materials and goods being lifted.

Read more...
PC-based control in window and door production
Beckhoff Automation Motion Control & Drives
Belgian machine builders CNC Solutions and Calvet are automating previously manual processes in aluminium window and door production. High-performance drive technology, motion control and electric cylinders from Beckhoff proved crucial in equipping the machine with the necessary finesse when pressing the window frames.

Read more...
World-class hoist maintenance
ABB South Africa Motion Control & Drives
In underground mining, hoists are among the most significant investments a company can make. ABB has developed ABB Care for Hoisting, designed to help mining companies transition from reactive or even preventive maintenance approaches to a truly predictive model, maximising hoist performance, extending asset life, and safeguarding operational continuity.

Read more...
Large-scale green hydrogen plant
Motion Control & Drives
As Europe’s first large-scale green hydrogen plant, Shell’s Holland Hydrogen 1 is a landmark renewable energy project. Mammoet was involved to plan and manage the road movements and key lifts that would bring the facility to life.

Read more...
Planetary gear units for high torque requirements
SEW-EURODRIVE Editor's Choice Motion Control & Drives
Packing a compact design, along with high torque and low-speed outputs, the new SEW PPK and SEW P2.e planetary gear units from SEW-EURODRIVE offer new capabilities in continuous heavy-duty applications where space is at a premium.

Read more...
Robotic filling systems for the pharmaceutical industry
Motion Control & Drives
Pharma Integration, a leading pharmaceutical manufacturer, aims to replace traditional mechanical filling lines with compact, fully automated systems that are 100% robot-driven using machines known as Azzurra. Their integrated Faulhaber drives play a crucial role in the fill-finish process, ensuring the highest precision and safety across multiple production steps.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved