Motion Control & Drives


ISO fluid cleanliness codes for hydraulic and lubrication systems

March 2024 Motion Control & Drives

When setting target ISO fluid cleanliness codes for hydraulic and lubrication systems, it is important to keep in mind the objectives that need to be achieved, says Craig FitzGerald from ISO-Reliability Equipment.

Maximising equipment reliability and safety, minimising repair and replacement costs, extending useful fluid life, satisfying warranty requirements, and minimising production downtime are attainable goals. “Once a target ISO cleanliness code is set, following a progression of steps to achieve that target, and whether it is monitored and maintained accordingly, has considerable benefits,” says FitzGerald.

The first step to identify a target ISO code for a lubrication system is to identify the most sensitive component supplied by the reservoir. If a central reservoir supplies several systems, the overall cleanliness must be maintained, or the most sensitive component must be protected by filtration, which cleans the fluid to the target ISO cleanliness before reaching that component.

Conservative target ISO cleanliness codes are based on several component manufacturers’ guidelines and extensive field studies for standard industrial operating conditions in systems using petroleum-based fluids. If a non-petroleum-based fluid is used, for example water or glycol, the target ISO code should be set one value lower for each size. If a combination of the following conditions exists in the system, the target ISO code should also be set one value lower:

• The component in question is critical to safety or overall system reliability.

• Frequent cold starts.

• Excessive shock or vibration.

• Other severe operation conditions.

Once the target ISO fluid cleanliness code is established, it is critical to measure the actual cleanliness of the system properly. A well-formulated plan to achieve cleanliness can be undermined if steps are not taken to ensure accurate and repeatable oil analysis. When sampling the oil, a wide range of variables can affect the outcome, yielding inaccurate results.

In terms of oil sampling methods and practices, bottle samples analysed by independent laboratories is common and widely accepted as a method of quantifying fluid cleanliness. “However, there are many variables associated with bottle sampling that can cause inaccurate readings,” notes FitzGerald.

Connecting an on-line particle counter directly to the hydraulic or lube system through sampling ports provides the most accurate snapshot of fluid cleanliness, and eliminates many of the inherent variables associated with bottle sampling. Some particle counters can function with system pressure as low as 1,4 bar for sampling pressure lines, return lines, or lubrication systems.

When system pressure is unavailable, there are also particle counter options available to draw the fluid from a reservoir, tote or other container directly into the particle counter. “Monitor sample port cleanliness in real-time to know when the sample is truly representative of the system and not tainted with sample port contaminate build-up,” advises FitzGerald.

Maintaining control of the sampling and analysis procedures increases the accuracy of results, eliminates the waiting game to get samples back from a laboratory, allows quicker response to contamination related issues, and even saves costs on oil sample kits. “No one knows your system better than you. Once armed with the right oil analysis approach and diagnostic equipment, you can make considerable improvements in reliability,” he adds.

Just as sampling technique and method can compromise results, sampling port and location can also be a challenge. Sampling ports are often contamination collection points and must be flushed for up to six minutes before a truly representative sample is captured. Without a proper port flush, the results can be affected. Port location is also critical to obtain a good sample. Locating the sampling port where there is turbulent flow will provide more realistic results than a laminar area, or directly from the tank itself.

Setting target ISO fluid cleanliness codes for hydraulic and lubrication systems maximises equipment reliability and safety. Maintaining the recommended ISO cleanliness level reduces the risk of component wear, system failure and unplanned downtime. Clean fluids ensure proper lubrication, prevent premature wear, and extend equipment life, minimising repair and replacement costs. Contaminated fluids result in increased operating costs and higher wear rates on components such as pumps, valves and bearings.

“Regularly achieving the target ISO cleanliness code reduces the need for costly repairs and parts replacements and vastly extends useful fluid life. Clean fluids last longer and perform better,” says FitzGerald. Achieving the target ISO code ensures that the fluid remains effective, reducing the frequency of oil changes. In addition, many original equipment manufacturers specify cleanliness levels for warranty coverage. Meeting these requirements ensures that warranty claims are valid, and equipment remains protected.

“The task of reaching ideal target ISO cleanliness codes is really not achievable with present in-line filtration technologies. Filter dirt holding capacities are low and these strainer type filters still allow large volumes of contamination through, when they are under the filter efficiency rating,” says FitzGerald. To combat these challenges and make possible what was previously an almost impossible task, ISO-Reliability Partners has developed class-leading offline microfine filtration systems that simplify the process and makes these targets easy to achieve.

As an example, oil supplied to a gold processing plant by a major refiner was found to have an ISO cleanliness of 21/20/18, which is too contaminated for use without causing significant wear and high in-line filtration costs. Shortly after system integration, the oil in question was tested to an ISO cleanliness of 15/12/10.

For more information contact Craig FitzGerald, ISO-Reliability Partners, +27 10 449 6414, [email protected], www.iso-reliability.com




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

More movement on the market
Motion Control & Drives
If you want to move something, you have to be able to control the movement. When positioning in the nanometre range everything matters and requires high performance motion control. Six years ago, Aerotech therefore set itself the goal of revolutionising the market for precision motion and machine control systems.

Read more...
Highly customisable robotic hand
Motion Control & Drives
NSK and the German Aerospace Centre are developing a robotic hand system that will help automate manual tasks. The concept centres on a customisable robot hand comprising individually configurable finger modules, an industry first.

Read more...
Electrically-operated diaphragm pumping solutions
Bearing Man Group t/a BMG Motion Control & Drives
BMG has extended its range of Ingersoll Rand ARO fluid handling products to include the new EVO series electric diaphragm pumps, designed to enhance energy efficiency and improve fluid handling productivity.

Read more...
Surface drill rigs for Navachab in Namibia
Motion Control & Drives
Epiroc South Africa recently delivered five of six FlexiROC drilling machines to key customer, Navachab Gold Mine.

Read more...
Grease degradation diagnosis technology
Motion Control & Drives
NSK is developing a world-first: a high-accuracy way of rapidly and accurately diagnosing the remaining life of lubricant grease. The company will provide the solution as a mobile app, enabling users to perform the onsite analysis of lubricant condition in bearings and linear motion systems.

Read more...
New compact VFDs with higher power ratings
Motion Control & Drives
Invertek Drives has revealed the extension of its industry-leading Optidrive Coolvert variable frequency drive with the launch of two new compact frame sizes with higher power ratings.

Read more...
Asset reliability care field dominated by WearCheck
Wearcheck Motion Control & Drives
Condition monitoring specialist, WearCheck has solidified its position as a leading player in the asset reliability care sector.

Read more...
Revolutionising manufacturing: the impact of machine learning in robotics
Motion Control & Drives
The integration of machine learning (ML) into robotics has the potential to revolutionise many industries, in particular the manufacturing sector. Yaskawa South Africa is at the forefront of embracing this transformative technology to optimise innovation and propel the manufacturing industry forward.

Read more...
Chain hoist friction clutch tester
WIKA Instruments Motion Control & Drives
WIKA’s FRKPS chain hoist test set is a reliable and efficient way to test the friction clutch on your chain hoist.

Read more...
Why artificial intelligence matters in robotic technology
Motion Control & Drives
Andrew Crackett, managing director of Yaskawa Southern Africa, gives his insight into the role of AI in robotics technology, with its advantages and challenges, and makes predictions for the future.

Read more...