PLCs, DCSs & Controllers


Deep learning based component inspection in the automotive industry

September 2023 PLCs, DCSs & Controllers

Achieving the shortest possible inspection times – even when working with different components – is paramount when it comes to series production. This is precisely what stoba Sondermaschinen achieved with its optical inspection system, which is based on deep learning, and features the Beckhoff XPlanar planar motor system at the conveyor system core. The system allows automotive suppliers to achieve extremely short cycle times of just three seconds when inspecting high-pressure injection valves, for example, and so inspect around six million parts per year in three-shift operation.

In the words of Michael Berkner, a sales expert for laser technology at stoba, the special machine builder primarily sets itself apart through its expertise in the field of automated production. “This expertise is built on extensive experience in laser material processing, which requires a high level of precision and the optimal combination of automation, laser technology, and optical test systems. The result is the InspectorONE test system – a self-learning machine for the visual inspection of all kinds of components and products.” Modularity is also a crucial factor here. Depending on the application and testing process, the system includes not only different types of stations, but also different numbers of stations such as camera systems for surface inspection, and measurement technology for component measurement or code readers. This can be defined on a modular basis according to requirements, just as XPlanar as the central handling unit can be optimally adapted via the respective number of tiles and movers.

Quick and error-free testing

The system currently being implemented is an optical testing machine for high-pressure injection valves, which has been specially configured for an automotive supplier. It is loaded and unloaded via robots, and integrated directly into the end customer’s production line. XPlanar forms the conveyor technology basis for product transport, with the floating movers moving the components to the various camera and measuring stations as needed in a process-optimised manner. This allows incredibly short inspection times to be achieved for different components, meaning it was possible to achieve the specified cycle time of three seconds – and thus the high number of six million inspected parts per year – in three-shift operation.

Equipped with cameras and deep learning software, the system operates quickly, automatically, and with continuously improved capabilities, such as scanning components and detecting features or anomalies. Functional examples include parts inspection with 360° rotation, simultaneous inspection of different components on one machine, and detection of surface defects, contamination, and particles in liquids or air bubbles in the material.

XPlanar for speed and flexibility

The XPlanar movers not only transport the components to the individual inspection stations, but they also optimise the process flow due to the many degrees of freedom in movement. For example, the rotation of the mover simplifies and accelerates component measurement from all sides. XPlanar enables short cycle times, which would be difficult to achieve even with a rotary indexing machine. It is also an extremely flexible and easily customisable modular system. The floating movers represent a wear- and abrasion-free conveyor technology, which makes them ideal for use in clean rooms. This would not be feasible with linear guides or rotary indexing machines.

Alternative concepts such as a rotary indexing machines would require significantly more mechanical design, which XPlanar replaces with its high level of software functionality. Although it is also possible to measure several parts at the same time in a rotary indexing machine, it would be necessary to couple corresponding rotational axes to implement rotational inspection. This would make it impossible to achieve the required inspection time of three seconds while trying to accommodate this kind of coupling and subsequent decoupling. With XPlanar, on the other hand, this can be achieved simply using software functionality for 360° rotation.

XPlanar also eliminates mechanical abrasion for an extremely low maintenance overall system. This has a positive effect, especially with the frequent product changes throughout the year. XPlanar has also allowed us to achieve a particularly compact machine design, saving us around 15 to 20% floor space compared to conventional systems. According to stoba’s laser technology expert Simon Mohr, the accessibility of the system has also improved: “The new design has made it possible to accommodate the control cabinet under the XPlanar tile surface. This is the only way to ensure service doors can be fitted on all four sides of the machine, thereby facilitating access to the system.” he says.

The reduced need for maintenance also affects the overall efficiency of the system, as less maintenance ultimately frees up more time for effective testing. According to the stoba experts, this is also directly evident in testing operations, in that the floating product transport avoids abrasion and thus minimises contamination of the components with microparticles. In the event that particles of this nature are present, they are detected as an anomaly by the high precision deep learning software, even if it is not an actual component defect.

Software functionality increases adaptability

Mohr also sees the high software functionality of XPlanar as a major advantage with regard to the adaptability of the test system to changing requirements: “If you consider the long service life of the system as well as the different product life cycles, replacing mechanics with the software functionality of XPlanar becomes decisively more important,” he says. “A flexible system such as InspectorONE can be adapted to new components or changed inspection requirements over many years without much effort by simply replacing or adding the respective inspection stations. As far as the changed product transport goes, it is sufficient to perform updates via software. This still has great potential for the future. For example, we are looking into component-specific formulas for the motion profiles of the XPlanar movers so that we can test different components batch by batch without interrupting the production process. This would simply not be feasible with a mechanical conversion.”


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Pluggable system solution helps tackle skills shortages and addresses DC power supply needs
Beckhoff Automation Enclosures, Cabling & Connectors
As a replacement for the conventional control cabinet, the MX-System from Beckhoff is a uniform modular automation system that can be used to completely replace traditional control cabinets with function modules in many applications.

Read more...
PC-based control for advanced hydrogen storage technology
Beckhoff Automation Fieldbus & Industrial Networking
Sufficient storage options for renewable energies are essential to use them as efficiently as possible. GKN Hydrogen offers a particularly compact and safe option, low-pressure metal hydride hydrogen storage systems with PC-based control from Beckhoff.

Read more...
Prestigious award recognises inventiveness and entrepreneurial courage
Beckhoff Automation News
Hans Beckhoff, managing director, owner and founder of Beckhoff Automation, was recently honoured with the widely acclaimed Rudolf Diesel Medal 2025. This medal honours him as a visionary pioneer in automation technology.

Read more...
Next-generation homebuilding
Beckhoff Automation Editor's Choice Motion Control & Drives
Promise Robotics, a Canadian startup is reinventing prefabrication. Advanced automation technology from Beckhoff and AI control a robotic solution for efficient prefabrication. As a result, onsite assembly becomes up to 70% faster.

Read more...
New modules for distributed integration of intrinsically safe signals
Beckhoff Automation IS & Ex
Beckhoff provides a compact acquisition solution for intrinsically safe signals up to zone 0/20 with the IP67-protected EtherCAT Box modules of the EPX series.

Read more...
Beckhoff’s XPlanar boosts productivity in medical device assembly
Beckhoff Automation Fieldbus & Industrial Networking
The intelligent transport system, XPlanar from Beckhoff provided the basis for an innovative system concept allowing the specialists at Automation NTH to reduce the space requirement of an assembly machine for medical diagnostic devices by a factor of 10.

Read more...
Automation in the energy and process industries
PLCs, DCSs & Controllers
For over 40 years, ABB has built and maintained a leadership position in the distributed control system (DCS) market by preserving its customers’ capital investments while providing new capabilities.

Read more...
PC-based control for a food capsule and pod packaging machine
Beckhoff Automation Editor's Choice
For TME, a machine builder specialising in the packaging of powdered foods, Beckhoff’s PC-based control technology offers unlimited opportunities when it comes to performance and innovative capacity in terms of flexibility, scalability and openness.

Read more...
Multi-touch panel generation in a smart design
Beckhoff Automation Operator Interfaces, Switches & Relays
Following over 25 years of successful in-house panel production and 12 years of expertise in multi-touch design, Beckhoff is bringing out a new smart panel design, the Next multi-touch panel generation.

Read more...
Next-generation PLC technology with advanced chatbot functionality
Beckhoff Automation IT in Manufacturing
Beckhoff is taking automation technology to the next level with TwinCAT PLC++. Both engineering and runtime are noticeably faster, without compromising on TwinCAT’s signature strengths of seamless integration, compatibility and openness.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved