Sensors & Transducers


Smart sensor for condition monitoring

September 2023 Sensors & Transducers

Yokogawa has developed a compact, intelligent, low-power battery-operated LoRaWAN wireless sensor, that can be deployed to perform vibrational condition monitoring in the field. Affectionally known as the Sushi Sensor, it can be installed on a plant in large numbers to acquire sensory data. This is centrally collected and analysed by AI algorithms running in the background, whose function is to predict the imminent failure of rotating machines. This paper introduces both the technology and the effectiveness of deploying these small technological wonders in the field.

Background

Condition monitoring (CM) is an approach that utilises sensory data in the field to analyse the performance and efficiency of machinery while in operation. Through the combination of real-time data that is meticulously analysed by advanced software packages, based primarily on artificial intelligent algorithms, the system can identify patterns within the captured data.

Anomalies in the historical trends of the performance of a specific machine can be the indication of early stage deterioration, while simultaneously and objectively interpreting the data to predict the remaining life of a machine while in operation. When an anomaly is detected, an alert is sent through to flag the early detection so that corrective preventative action can be taken by the engineering team before the anomaly leads to a major breakdown or catastrophe. This approach offers a holistic, plant-wide view of a plant’s health and safety while dramatically increasing a machine’s productivity, operating life and business profitability.

In contrast to standard plant operation, production and safety control systems, condition monitoring is based on hundreds to thousands of sensory data points in the field that are used to capture the vast array of data monitoring variables that need to be analysed. Compact wireless sensors like the Sushi Sensor are an attractive solution in such an application. They have the benefits of reduced wiring costs, ease of installation, rapid integration, and wireless network connectivity.

Vibration monitoring

Integrated into the condition monitoring diagnostic tool package, vibration monitoring is one of the most effective means of detecting and preventing the early stages of equipment failure by monitoring key aspects of rotating machines such as imbalance, misalignment, looseness, and bearing wear.

The integrated sensor converts the mechanical oscillation of the object relative to a static point into an output signal that constitutes the sequential sample data points that need to be captured and analysed relative to a timestamp of events. As each component of a rotating machine generates its own fundamental frequency, a cumulative complex output waveform signature is ultimately generated. These signatures are unique to the machines and form the baseline from which potential failures are identified, to the point that analysis can even isolate the fault on a component level, for example excessive wear on a specific bearing. Rotating machines of various sizes like motors, pumps, gearboxes, compressors and fans can be easily and effectively monitored by a Sushi Sensor mounted on the outer casing.

LoRaWAN technology

Long Range Wide Area Network (LoRaWAN) technology is designed to connect wireless IoT devices in the field. It is characterised by a long range and low data rate (0,3 to 50 Kbps) at a very low power consumption, with a frequency that ranges from 433 to 915 MHz, country dependent. Deployed in a star topology configuration in which localised gateways relay messages between end nodes and the network server, each gateway acts as a transparent bridge converting RF packets to IP packets and vice versa.

LoRa is defined as the physical layer responsible for the wireless modulation radio transmission (RF) technology, while LoRaWAN is the wide area networking protocol that is built on top of LoRa that wirelessly manages the bidirectional communication securely. This is governed, maintained and standardised by the LoRa Alliance governing body.

This radio modulation technique transmits data packets utilising a chirp spread spectrum (CSS) in which a chirp consists essentially of a sinusoidal waveform whose pulse frequency either increases (up-chirp) or decreases (down-chirp) over a specified time. Furthermore, the Spread Spectrum Factor (SF) defines the duration of the chirp within a specific frequency band or bandwidth (BW).

The network components termed nodes within the LoRaWAN system architecture are divided into three classes:

• Class A devices are low power consumption nodes like sensors, in which data can only be received at specific window times after data is transmitted.

• Class B devices are high power consumption nodes like actuators, which have periodically synchronised receiving window times when data can be received.

• Class C devices are mains-powered nodes like gateways, where the receiving window remains open except during transmission.

The Sushi Sensor is designated as a Class A LoRaWAN classified node, powered by a SAFT LS lithium-thionyl battery to ensure long service life. Operating at normal environmental temperatures, a typical battery life of four years can be expected.

NFC technology

Near Field Communication is a short range RF wireless technology that enables two NFC-compliant devices to exchange data securely, quickly and easily with a single touch. The Sushi Sensor is equipped with an NFC-enabled interface, which enables users to interact with the device in terms of monitoring and configuration using an Android mobile phone and the Sushi Sensor App available from the Google playstore.

The Sushi Sensor app also forms an integral part of the cryptographic protection process, determining how each individual sensor is paired to the host gateway to ensure optimum security. Furthermore, the Sushi Sensor extracts and stores the GPS coordinates from the commissioning phone to tag its relative position in the field. A smart alternative tracking solution like an onboard GPS chip would have shortened the battery life and increased the overall cost.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Next-generation condition monitoring
Sensors & Transducers
The next generation Sitrans MS200 multisensor from Siemens is setting new standards in condition monitoring.

Read more...
Telco sensors for blocked/empty chute detection
Sensors & Transducers
Telco sensors overcome the problems of contaminated environments through powerful high-performance infrared sensors that ensure penetration of harsh pollution and guarantee reliable detectio

Read more...
Cleaning solutions for optical sensors
Endress+Hauser South Africa Sensors & Transducers
Achieving accurate and continuous process visibility requires reliable sensor performance, even in challenging media. Endress+Hauser’s CYR51 mechanical cleaning unit addresses these challenges by providing stable, automated cleaning of turbidity and UV-Vis absorption sensors.

Read more...
Next-generation gas meter module
Sensors & Transducers
Sensirion has launched its new gas meter module combining a low-power consumption mode, future-ready compatibility and seamless integration, all within the same compact form factor.

Read more...
Adjustable proximity sensor with five metre range
Gail Norton Instrumentation Sensors & Transducers
The Telco line of photo-electric eyes have the accuracy and reliability you need.

Read more...
Food safety – a matter of weight
Sensors & Transducers
Weighing systems play a key role in ensuring product quality in food production, complying with legal requirements and avoiding product recalls. The Minebea Intec MiNexx portfolio has been specially developed to meet these requirements.

Read more...
Telco sensors in the paper and pulp industry
Gail Norton Instrumentation Sensors & Transducers
The paper and pulp industry poses a major problem for most photoelectric sensors. Telco Sensors has overcome this with its powerful and high-performance photoelectric sensors, ensuring penetration of thick and harsh pollution while guaranteeing reliable detection.

Read more...
Leaders in sensor technology
Gail Norton Instrumentation Sensors & Transducers
A new addition to the Telco Sensors range is the adjustable Proximity sensor, with a range up to 5 metres.

Read more...
Cutting-edge sensor technology
Endress+Hauser South Africa Sensors & Transducers
The advantage of Endress+Hauser’s Memosens technology is that digitised measured values and sensor information are transmitted via a non-contact connection from the sensor to the cable, and as a digital signal to the transmitter.

Read more...
Miniature inductive sensors
ifm - South Africa Sensors & Transducers
The inductive IY/IZ type sensors from ifm are used in various industrial areas where space is limited.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved