Motion Control & Drives


Sustainable machines for the ground engineering sector

Technews Industry Guide: Sustainable Manufacturing 2023 Motion Control & Drives

The global drive towards net zero and sustainable energy sources is accelerating the shift from fossil fuel to electric-driven machines. Some European companies are already setting conditions for electric-driven equipment on their tender requirements. Large machines are more complex to convert because of the high power demand. Nevertheless, as electric technology develops, the ground engineering sector is making progress in transitioning the industry to electric power.

Soilmec is a leading ground engineering company with a history of over 50 years in designing, manufacturing and distributing equipment. In line with global trends toward sustainability, Soilmec has embarked on creating a zero local emission line of machines, choosing the microdrilling machine SM-13e as the first in this range. This machine is typically used in soil consolidation work, anchorage, and tunnel construction.

Parker Hannifin supplied several components for the SM-13e, including the GVM210 series motors and GVI-G650 inverters. This project aimed to meet the functional requirements for speed and power, while significantly reducing operating costs and improving performance relative to the diesel-powered machine.

The challenges of electric ground engineering machines

Ground engineering machines work in extreme conditions. Construction sites are exposed to the elements and dusty conditions associated with earthmoving. Additionally, drilling through rocky ground results in strong vibrations. Sensitive electronic components must be designed for these conditions. In the case of the Soilmec SM-13e ETECH machine, the functional requirements created some specific challenges. The SM-13e required four electric motors, each with an inverter. Two of these motors were mounted on top of the mast in the rotary head. The elevation was particularly challenging because cooling systems had to supply the motor at heights up to 10 metres, without interfering with the machine’s operation.

Two motors in the rotary head drove the rotational movement, and the other drove the push-pull movement of the drilling head. The control of the rotary’s motors had to be highly synchronised, making the inverter and motor design and control critical for machine operation. The rotational speed could vary from a high of 130 rpm to a low of 1 rpm. The push-pull motor also had a wide speed range from to 0,08 to 50 m/min.

The electric technology behind the SM-13e

Parker supplied several components for Soilmec’s electrified microdrilling machine, including motors and inverters. The design of the SM-13e utilised the following technologies: GVM210300 motor, GVI-G650 inverter, QDC-050-B hydraulic cooler, and P2075L hydraulic variable piston pump.

The SM-13e solution was designed with maximum flexibility in mind. There were three operating modes: Normal, Eco and Boost. The Normal mode delivered standard operational performance, and the Eco mode allowed for conserving energy when power demands were lower, lengthening battery life. The Boost mode enabled short periods of maximum performance.

A collaborative approach

In developing the Soilmec SM-13e machine, Parker and Soilmec engineers worked together in a collaborative approach. They went through several iterations of refining the requirements, selecting components, and designing a system that worked as an integrated whole. As a result, the first Soilmec SM-13e machine is already delivering excellent results in the field.

The benefits of electric ground engineering machines

Electric machines, like the SM-13e, deliver significant benefits to ground engineering companies. Firstly, they enable users to reduce their carbon footprint substantially. The SM-13e is much more efficient than the diesel equivalent. As the energy source is electrical, the CO2 and other greenhouse gas (GHG) emissions are vastly reduced. At the same time, electric machines are much quieter than internal combustion engines. In contrast to endothermic machines, electric motors are off when the utilities are active but the machine is not drilling. This drastically reduces both the noise to which the operator is subjected, and the energy consumption of the machine.

Secondly, improved efficiency also reduces running costs. Diesel engines tend to run on a time-based service interval. This interval is calculated based on the running time of the machine, including idle time. On the other hand, motors on electric machines can be individually monitored for running time. Thus, maintenance intervals can be significantly extended, resulting in operating costs as much as 56% lower. Additionally, the machine is more available due to reduced downtime, and jobs can progress quicker. Maintenance costs are also reduced because there are fewer maintenance tasks required on an electric motor than on a diesel engine. Lastly, electric machines offer higher performance than their diesel equivalents. This benefit is due to the constant torque availability from electric motors, regardless of speed.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Novel bearing steel next generation of aeroengines
SKF South Africa Motion Control & Drives
SKF continues to re-imagine intelligent and clean rotation with the development of an innovative temperature-resistant, corrosion-tolerant steel called ARCTIC15 designed for aeroengine bearings.

Read more...
Products from maxon
Motion Control & Drives
A wide range of new products is available from motion control specialist, maxon. with a diverse technology portfolio ranging from highly integrated robotic actuators to powerful servo drives and controllers.

Read more...
Actuators for precise hexapod movements
Motion Control & Drives
Aerotech, manufacturer of high-performance motion control and automation systems, is expanding its Automation1 platform. These compact hexapod devices enable the complete integration of six-axis motion systems into existing control

Read more...
SEW-EURODRIVE service centre transforms future of drive repairs
SEW-EURODRIVE Motion Control & Drives
In a momentous step for the local industrial gearbox and drives market, SEW-EURODRIVE South Africa has formally opened a new service and repair facility alongside its headquarters in Aeroton,

Read more...
Strategic system upgrades beat mining obsolescence and drive productivity
Motion Control & Drives
Mining operations are under constant pressure to maintain output while controlling costs. One persistent challenge continues to confront the industry, knowing when and how to upgrade aging systems before they become a liability.

Read more...
Precision meets performance: The ELGD Axes Family from Festo
Festo South Africa Motion Control & Drives
Festo has introduced the ELGD axes family, engineered for the demands of future-focused industries. With cutting-edge guide technology, exceptional rigidity and high load capacity, these axes deliver more performance within the same installation footprint.

Read more...
Condition monitoring in hazardous areas
SKF South Africa Motion Control & Drives
SKF is further strengthening its condition monitoring offer portfolio by a newly developed hazardous area version of its Microlog Analyzer dBX portable vibration analyser.

Read more...
Rip-and-ship solution speeds up nuclear decommissioning project
Motion Control & Drives
When removing steam generators from decommissioned nuclear reactor buildings, the most economical method is to remove them in one piece. Mammoet was commissioned by Framatome to support with the removal of four steam generators from PreussenElektra’s Nuclear Power Plant Unterweser in Germany.

Read more...
WearCheck turns the focus on friction modifiers
Wearcheck Motion Control & Drives
One of the most important features of a lubricant is the reduction of friction between two surfaces.A dditives like friction modifiers are added to perform this function. Wearcheck turns the focus on friction modifiers

Read more...
SEW-EURODRIVE transforms drivetrain uptime
SEW-EURODRIVE Editor's Choice Motion Control & Drives
The DriveRadar IoT Suite from SEW-Eurodrive is an ideal solution for industrial condition monitoring. This powerful ecosystem of intelligent sensors, edge devices and cloud-based analytics ensures that customers have full visibility and control of their operations.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved