Motion Control & Drives


Managing wear and friction in mini motors

January 2023 Motion Control & Drives

Understanding the impact of friction and wear on a mini motor, as well as the factors that cause them, is a key specification requirement. Technically known as the study of tribology, the effects are always specific to the individual application, and combatting them is critical for durability and long lifetime running. Specifying a mini motor to an application’s tribological requirements will optimise performance long-term and minimise replacement and maintenance costs for the end user.

As miniaturised electrical motor designs include components that physically interact during motion, including brushes and bearings, the impact of friction and wear are key considerations for their specification. Components subject to these types of mechanical stresses typically fail first, meaning that the motor’s lifespan and long-term performance are dependent on these tribological design factors. As the level of friction and wear differs for every application, it is crucial to understand the specific tribology requirements in order to specify the most effective and economical mini motor design.

Electrical brushes

High-speed mini motors involve brushed or brushless technology. DC brush motor designs use armatures that rotate against static brushes to make the electrical connections. The brushes are always used under electrical and mechanical stress, and as a result they wear over time. Brush wear is proportional to the applied spring force and sliding speed. Wear is caused by starting current, continuous current and voltage drop across commutation − the process of conversion of electrical current. High running speeds, typical to many mini motor applications, will also increase the rate of wear. At high speed, the sliding electrical contact can cause mechanical losses, unstable electrical contact and arcing, leading to surface wear. Environmental factors, including temperature and humidity, will also have an effect.

To combat these factors, the construction material and collector coating are key considerations. For example, in high-torque applications, carbon brushes provide increased resistance for longer lasting performance and lifetime. Lubrication types and practices are also important, and to reduce friction, special electrical greases should be used, particularly for high-speed applications.

While brushes wear over time, producing dust and requiring periodic maintenance and replacement, they can be a more cost-effective motor choice. Brush DC motors have a high torque to inertia ratio, and as they require few external components, this reduces potential points of wear and failure. Thus they can be ideal for use in rugged conditions.

Brushless DC motors

Alternatively, brushless DC (BLDC) motor designs remove the challenge of wear. Instead of a brush and mechanical commutator, the motor’s permanent magnet is mounted on the rotor, and motion is generated by the stator’s energising coils. Meanwhile, commutation is performed by an external controller and position sensor. The brushless design means a longer-life motor, with no maintenance requirements, providing high reliability. A BLDC motor can achieve very high speed, and as a result of its commutation sensors, enables precise control and speed regulation. Superior control however requires additional components and complexity, typically making a BLDC motor more expensive than its brush DC counterpart.

Bearings

While BLDC motors are advantageous with regard to physical wear, like brushed DC motors their design still depends on bearings. As a motor’s bearing assembly reduces friction between the rotating shaft and the stationary flange, the bearings themselves absorb wear. As a result, they deteriorate over time. Bearing selection to optimise motor performance and lifetime requires detailed understanding of load pattern and system level deflection. Clearances between the rolling element and possible misalignments caused by loads and fluctuating temperature must also be taken into account.

Optimal lubrication selection maintains performance and enhances lifetime, with different levels of time-dependent thinning used in bearing configurations. Ultimately, hydrodynamic lubricant film selection depends on the balance of factors, including material compatibility, dew point, viscosity parameters, environment and service temperature.

As a result of these factors, bearing design and material selection will ensure lifetime and performance. For example sintered bush bearings deliver lubrication through capillary action between rotating components. They require less maintenance and are relatively low cost for a variety of applications. However, they are less resistant to high speeds and loads, so more robust designs would be preferable.

Design consultancy

Mini motor tribological factors are vital considerations for the performance and lifetime of applications driven by mini motors. Design, materials and lubrication will minimise the effects of friction and wear, and a thorough understanding of the physics involved is important to optimise mini motor specification. Motor design and selection will not only enable the most effective result, but will also minimise long-term costs in replacement and maintenance.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Novel bearing steel next generation of aeroengines
SKF South Africa Motion Control & Drives
SKF continues to re-imagine intelligent and clean rotation with the development of an innovative temperature-resistant, corrosion-tolerant steel called ARCTIC15 designed for aeroengine bearings.

Read more...
Products from maxon
Motion Control & Drives
A wide range of new products is available from motion control specialist, maxon. with a diverse technology portfolio ranging from highly integrated robotic actuators to powerful servo drives and controllers.

Read more...
Actuators for precise hexapod movements
Motion Control & Drives
Aerotech, manufacturer of high-performance motion control and automation systems, is expanding its Automation1 platform. These compact hexapod devices enable the complete integration of six-axis motion systems into existing control

Read more...
Strategic system upgrades beat mining obsolescence and drive productivity
Motion Control & Drives
Mining operations are under constant pressure to maintain output while controlling costs. One persistent challenge continues to confront the industry, knowing when and how to upgrade aging systems before they become a liability.

Read more...
Precision meets performance: The ELGD Axes Family from Festo
Festo South Africa Motion Control & Drives
Festo has introduced the ELGD axes family, engineered for the demands of future-focused industries. With cutting-edge guide technology, exceptional rigidity and high load capacity, these axes deliver more performance within the same installation footprint.

Read more...
Condition monitoring in hazardous areas
SKF South Africa Motion Control & Drives
SKF is further strengthening its condition monitoring offer portfolio by a newly developed hazardous area version of its Microlog Analyzer dBX portable vibration analyser.

Read more...
Rip-and-ship solution speeds up nuclear decommissioning project
Motion Control & Drives
When removing steam generators from decommissioned nuclear reactor buildings, the most economical method is to remove them in one piece. Mammoet was commissioned by Framatome to support with the removal of four steam generators from PreussenElektra’s Nuclear Power Plant Unterweser in Germany.

Read more...
WearCheck turns the focus on friction modifiers
Wearcheck Motion Control & Drives
One of the most important features of a lubricant is the reduction of friction between two surfaces.A dditives like friction modifiers are added to perform this function. Wearcheck turns the focus on friction modifiers

Read more...
SEW-EURODRIVE transforms drivetrain uptime
SEW-EURODRIVE Editor's Choice Motion Control & Drives
The DriveRadar IoT Suite from SEW-Eurodrive is an ideal solution for industrial condition monitoring. This powerful ecosystem of intelligent sensors, edge devices and cloud-based analytics ensures that customers have full visibility and control of their operations.

Read more...
PC-based control for flat wire motors for electric vehicles
Beckhoff Automation Editor's Choice Motion Control & Drives
Special machine manufacturer, ruhlamat Huarui Automation Technologies has unveiled the second generation of its mass production line for flexible stators with bar winding (pins). This enables an extremely short production cycle and line changeover times, supported by PC- and EtherCAT-based control technology from Beckhoff.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved