Motion Control & Drives


Differential compact drives

June 2023 Motion Control & Drives

For OEMs that require miniaturised motion systems with higher ratio gear reduction, maintaining compact dimensions is a key requirement. Commonly, these applications also need optimal power density as well as transmission efficiency. From use in robotics through to medical infusion systems, differential compact drives can deliver reductions of over 300:1 in a small, two-stage design.

Wearable injection devices deliver vital drugs, such as insulin, to patients at planned intervals in the comfort of their own home. A key requirement of a wearable injection system is small size, giving the patient comfort with optimum usability. As a mobile device, these systems must also be energy efficient, and for round-the-clock use, quiet operation is important as well.

The motion system that drives the device, including the motor and gearbox, also has to fulfil these needs. These have to be highly compact and lightweight, yet provide the required power demand. While the motion system has to be able to deal with varying liquid viscosities − hence the requirement for a capable torque range − the gearbox also has to be able to provide a sufficient high speed reduction. This ensures it can give the control and accuracy vital for precision drug delivery.

Applications with similar requirements include the control of collimators used to filter X-rays and gamma-rays, and the motion of antenna positioning systems. A key requirement common to these uses is a gearbox that delivers high reduction, combined with a compact length. To fit these needs, differential compact drives have been developed. Also known as a compound planetary gear train or a compact planetary differential, this gearbox provides a mass to reduction ratio that is significantly lower compared to a planetary gear design.

Conventional planetary gear technologies are the choice for many applications as a result of their power transmission efficiency and relatively high power density. However, there are constraints, the most significant of which is the relatively low ratios that can be achieved. Typically, single-stage planetary gearhead ratios range from 3:1 up to 10:1, and this upper limit cannot be exceeded, because above that range pinion gears become too small for reliable or effective operation.

Inversely, planetary designs cannot be reduced to less than 3:1, as the similarly-sized pinion and sprocket below this ratio would not allow space for the planet gears. As a result, the best combination of pinion and planet gear size, performance, and life are ratios between 4:1 and 8:1.

Higher ratios than 10:1 can be achieved by designing in an additional planetary stage or stages, but this increases length of the unit, making it less attractive for applications that need a compact footprint. Additional stages also increase the number of moving parts, adding to the noise and weight of the system as a whole. For the same reason, friction is also increased, reducing the overall efficiency of the design, together with reliability and lifetime. Crucially for an OEM, any additional stage also adds an extra cost burden.

In many epicyclic gear train applications, the ring gear is fixed, while the star carrier is the output, and the sun gear is the input to the planetary system. Alternatively, the differential compact drive comprises a two-stage split ring epicyclic gearing system. The input stage ring gear is fixed, while the output stage ring gear is rotating, connected to and driving the output shaft. In this system, the input stage features planetary gearing; the output of this stage becomes the input to the second stage, where the ring gear of output stage is the final output.

The benefit of this design is that the reduction ratio and power output is much higher. At the same time, the differential compact drive achieves a much more compact footprint. The reduction can reach higher than 300:1 in a two-stage compound planetary differential, a ratio that could only be achieved with a conventional planetary design by adding three or four stages.

Applications that depend on the high limits of torque requirement might choose to remain with a conventional planetary design. Similarly, differential compact drives aren’t the desired options at the far extremes of reduction, below 50:1 and above 400:1. Most industrial applications though, such as those within robotics, industrial tools, and medical infusion systems, are within the gear reduction range. Engineers striving to achieve designs that are compact, highly efficient, and low noise, should consider differential compact drives as a favourable gearbox option.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

New generation surface drill rig
Motion Control & Drives
Epiroc South Africa is launching a new and improved PowerROC T45. This new generation surface drill rig offers increased fuel efficiency and high availability, and is a welcome addition to the PowerROC family.

Read more...
How vision-guided robotics is transforming South African manufacturing
Yaskawa Southern Africa Motion Control & Drives
In South African manufacturing, the final stages of production need more than manual labour or conventional automation. For many, vision-guided robotics is becoming the solution to smarter, more flexible end-of-line processes.

Read more...
Transporting substations for the world’s largest offshore wind farm
Motion Control & Drives
Dogger Bank Wind Farm will be the world’s largest offshore wind farm when it is completed. Mammoet was involved in providing transportation and weighing of the project’s three offshore substations.

Read more...
Lubrication application a key component for wire rope longevity
Motion Control & Drives
As part of its extensive work to help develop benchmarking standards for wire rope lubrication in South Africa, lubrication specialists Lubrication Engineers South Africa has found the Viper wire rope lubricator to be a key element for effective lubrication application and rope maintenance.

Read more...
Extreme pressure additives for oil
Wearcheck Motion Control & Drives
Extreme pressure additives - the other metal guardians in your oil additives - work their magic under pressure.

Read more...
SEW EURODRIVE sets the pace with power packs in African mining
SEW-EURODRIVE Motion Control & Drives
Comprehensively supporting the mining sector with commodity-specific drive train solutions, SEW-EURODRIVE has cemented its reputation as a trusted partner to the industry, a testament to its customer-centric approach.

Read more...
The future of robotics
Motion Control & Drives
Research into robotics and autonomy uncovers some of the up-and-coming industrial uses and applications within the sector, including for automotives and logistics, as well as for personal and commercial use.

Read more...
Anti-wear additives – the metal guardians in your oil
Wearcheck Motion Control & Drives
Anti-wear additives are used to protect against wear and the loss of metal surfaces during mixed-film and boundary-film lubrication.

Read more...
Generation surface drill rig
Motion Control & Drives
Epiroc is launching a new and improved PowerROC T45. This new generation surface drill rig offers increased fuel efficiency and high availability, and is a welcome addition to the PowerROC family.

Read more...
Coke drum integrity project at Canadian oil sands site
Motion Control & Drives
Mammoet supported a leading Canadian energy provider in Alberta’s oil sands with replacing its original eight coke drums.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved