Motion Control & Drives


Electromagnetic brakes for miniature DC motor applications

June 2022 Motion Control & Drives

Mini motor applications utilise DC motor technology because of compactness, low weight, and reliability. Stopping, slowing or holding the position and load of these motors is crucial for many applications, from controlling robotic joints through to automated window shades. This control is achieved by integrating an electromagnetic brake, accurately specified according to the application requirements and parameters of the DC mini motor. Louis Mongin, BLDC product strategic manager at Portescap, explains the technology behind electromagnetic brakes for DC mini motors.

In miniature DC motor applications, electromagnetic brakes are used to hold, stop or slow down a load. Without a brake, a motor would continue to rotate without control, even after cutting its supply of voltage or current; or it would fail to hold position against a competing power. While alternative torque control devices could be used, electromagnetic brakes can combine precision with a compact, reliable, energy-efficient and cost-effective design.

To hold a DC mini motor in position at a specific stopping point across a variety of industrial and medical applications, the general design includes a fixed field coil that acts as an electromagnet to generate torque to brake or hold the load. The coil’s electromagnetism controls an armature that either engages or disengages with a structure. The design of the brake mechanism features a hollow shaft mounted onto the shaft of the DC motor, which gives compact integration.

Brakes are available in a power-on design, which means that the brake is only engaged when current flows in the field coil. This is acceptable when the brake doesn’t have to hold a high load, or if holding torque isn’t required after power-off. Alternatively, with a power-off brake, the brake remains engaged at all times unless current is flowing in the electromagnet, which creates an inherently safer design for some applications.

Spring-set brakes utilise power-off braking and are used to automatically stop and hold a load in the event of a power failure or emergency stop situation. In this design, braking force is applied through a compression spring, and the brake is usually released by manual control. The advantages include repeated braking cycles from full motor speed with no torque fade, and the designs can be customised in aspects such as voltage rating and dynamic friction material according to the spring force requirement. The disadvantage of a spring brake is that it can present backlash, affecting the precision it can offer for dynamic braking or position holding.

Instead, for applications where dynamic stopping and holding a moving load is required, as well as for high cycle rate stopping, a permanent magnet power-off brake should be used. In this design, brakes are engaged magnetically and disengaged electrically, providing safe load holding in power shut-off. When voltage or current is applied to the brake, the coil becomes an electromagnet and produces magnetic lines of flux counteracting those of the permanent magnet. This action releases the armature, creating an air gap and allowing the load shaft to rotate. Increasing voltage or current also enables braking force to be controlled with precision, as opposed to the spring brake’s on/off functionality.

As the permanent magnet brake design includes no moving parts, the brakes can operate at very high speeds. Unlike spring brakes, they don’t allow backlash, because the design includes a fixed connection between the armature, spring and hub. This allows them to be controlled with precision. As heat is generated during dynamic braking, this means that the brake must be correctly sized to deal with friction, load and torque requirements. Permanent magnet brakes require consistent and specific current, meaning that these brake designs should be carefully considered before using them in conditions that could cause current fluctuations, such as high or changing temperatures.

Thanks to the precision control of a permanent magnet brake, they are well suited to use in robotic arm joints. Their zero-backlash capability means they can precisely hold torque and also provide dynamic stopping. An example of a DC mini motor application that requires safety in holding torque is the control of automated window shades. Providing automatic operation, the power-off brake also allows the motor to hold the shade position when power is removed.

Portescap’s engineers regularly integrate DC mini motor braking solutions into bespoke OEM applications. The team ensures exacting sizing and specification, as well as recommending the most effective technology and features for specific requirements. Design is combined with rapid prototyping and testing to ensure safety and precision, before moving the development to volume production.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Medium voltage drive for enhanced energy efficiency and process optimisation
Schneider Electric South Africa Motion Control & Drives
Schneider Electric South Africa has unveiled its cutting-edge Altivar Process ATV6100 medium voltage (MV) drive range, designed to enhance energy efficiency and operational reliability across various industries.

Read more...
Powerful high-precision hexapod
Motion Control & Drives
With the HEX150-125HL, Aerotech is launching the latest generation of its hexapod technology. The compact six-axis positioner combines precise movements with high load capacity and simple integration.

Read more...
Servicing the electric motor sector
Motion Control & Drives
Hexagon Electrical has expanded its manufacturing and service capabilities to meet the growing demand for customised, high-performance specialised electric motors in heavy engineering, and hazardous industrial and mining applications.

Read more...
Control system for deep antenna
Rockwell Automation Motion Control & Drives
When a major university in South Korea set out to build a 21-metre deep space antenna, the researchers needed a control system that could track celestial objects with pinpoint accuracy, a level of precision they thought was out of reach. By partnering with Rockwell Automation, they discovered that the right technology and support could turn their vision into reality.

Read more...
Manufacturers should go PFAS-Free
igus Motion Control & Drives
igus continues to develop engineered plastics that are free of per- and polyfluoroalkyl substances (PFAS-free) in response to mounting evidence of severe environmental and health hazards caused by the chemicals.

Read more...
South African paper producer partners with ABB
Motion Control & Drives
Neopak, a leading manufacturer of containerboard and paper products, has renewed its partnership with global technology company, ABB to upgrade the existing automation system at its Rosslyn Paper Mill in Pretoria.

Read more...
ABB supplies electromagnetic stirrer to world’s largest electric arc furnace
Motion Control & Drives
ABB has secured an order from Çolakoglu Metalurji. for an ArcSave electromagnetic stirrer to be installed on one of the world’s largest electric arc furnaces (EAF)

Read more...
Compact, powerful and green mini-picker
Motion Control & Drives
SkyJacks has introduced Jekko’s Mini Picker to the southern African market. This is a compact, highly versatile and environmentally friendly electric mini-picker that is set to redefine lifting capabilities across multiple industries.

Read more...
Redefining industrial lifting
Motion Control & Drives
The Konecranes S-series hoist redefines industrial lifting through its integration of a ground-breaking synthetic rope with smart features, a lifting capacity of 20 tons, and the ability to adapt to diverse girder configurations.

Read more...
Bühler drives innovation in agriculture and food processing
Motion Control & Drives
NAMPO 2025 is set to be one of the most significant agricultural events in southern Africa. It provides a unique platform for Bühler to showcase its advanced solutions that are designed to improve efficiency, sustainability and profitability in the agricultural sector.

Read more...