IT in Manufacturing


ABB technology can help make SA steel industry competitive

August 2021 IT in Manufacturing

South Africa’s steel industry needs to invest in technology like automation and data analytics if it is to improve its productivity to the point where it is globally competitive.

While sectors like aluminium are well advanced in automating their operations, and are ready to start digitalisation, the rest of the metals industry has lagged in its modernisation. This has not only impacted its ability to meet customer demands for increased product quality, throughput and yield, but has also affected downstream value-adding operations.

There are several good reasons why steel companies have not invested in new technology over recent years, including a negative market outlook, a preference to use labour instead of mechanisation, and the high cost of new equipment. One response is greater use of digital technologies, such as advanced data analytics. The idea is simple: if steel manufacturers were able to observe the status of equipment and processes in real time, they would gain crucial insight into deviations in product quality or problems with the process. This insight would allow operators to actively manage production, thereby increasing efficiency and reducing costs. But achieving this is easier said than done. To fully exploit the production potential of the local industry demands an integrated approach to automation optimisation, control and decision-support tools.

The good news is that many machines, like cold rolling mills, are often already equipped with modern control systems that use sensors to monitor and record data. And with sampling times in the range of milliseconds, hundreds of sensor values are recorded, including measurements of flatness, tension, speed and strip thickness. This data is routinely used by service engineers to commission and maintain various rolling mill devices – but it is rarely analysed for performance purposes, due to the difficulties of manual analysis and data pattern screening.

To help steel mill operators and maintenance engineers release the potential of their raw data and efficiently analyse the performance of their systems, a technology partner is required with deep domain knowledge and the ability to draw on the latest advances in neural networks and advanced data analytics applications for operational data. This combination of practical and digital expertise helps to create a digital service solution that addresses real-world challenges.

Creating the golden coil

In the first step on the road to digital awareness, a ‘golden coil’ is synthesised from available historical data: this is a fictional coil that consists of points when product quality and mill productivity were at their peak. The golden coil thus represents the operating modes in which the highest quality and productivity values were attained.

With this as a reference, deviations within the historical data can then be analysed, effectively teaching the system a range of functional behaviours which are classified from poor to excellent. Currently up to 100 different performance indicators are extracted from sensor measurements to compute the productivity and quality KPIs.

Once these have been calculated, the user can assess the performance of the coil currently in production by comparing it with the golden coil. The key point here is that once operators have a clear visualisation of the golden coil, they can compare it in real time with coils currently being produced, leading to faster troubleshooting.

ABB’s solution follows a conventional machine learning approach. Firstly, a model is created during a training phase, where the pattern of interest is characterised by examples as determined by a domain expert, and then used to teach the model. The model can then locate patterns within the time series data that are similar to the examples it has previously learned.

Going forward, AI is another concept with radical potential for steel mills. Although conventional signal processing is effective for certain use cases, it is not able to detect many relevant problems encountered by steel mill operators. For example, overshoot is an important characteristic of a control system that relates to step change. Common in cold rolling mills, measured overshoots all have similar visual appearances, but their shapes, waveforms and duration vary, making them hard to detect with classical signal processing methods. To counter this, ABB has developed an approach that can learn arbitrary patterns in time series data. The ability to track and analyse deviations in the performance of steel mills with data analytics is an important step in equipping operators for the challenging market conditions they face, and is the basis for collaborative solutions, such as performance optimisation services that combine continuous remote monitoring with process-specific data analytics and remote, expert support.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Why choose between Capex and Opex if you can Totex?
Schneider Electric South Africa IT in Manufacturing
In a sector marked by cyclical demand, high capital intensity, and increasing regulatory and sustainability pressures, mining, minerals and metals (MMM) companies are re-evaluating how they approach procurement and investment.

Read more...
AI and the smart factory
Schneider Electric South Africa IT in Manufacturing
Imagine walking into a factory where machines can think ahead, predict problems before they happen and automatically make adjustments to realise peak performance. This isn’t science fiction, it’s happening right now as AI continues to transform how we run industrial operations.

Read more...
Why your supply chain should be a competitive advantage
Schneider Electric South Africa IT in Manufacturing
The last five years have placed unprecedented strain on global supply chains. Leading companies are turning the challenge into an opportunity to transform their supply chains into a competitive advantage.

Read more...
Why AI will never truly understand machines
Wearcheck IT in Manufacturing
Cutting-edge technology and solutions powered by AI are embraced by specialist condition monitoring company, WearCheck, where the extreme accuracy of data used to assess and diagnose machine health is paramount.

Read more...
Buildings and microgrids for a greener future
Schneider Electric South Africa IT in Manufacturing
Buildings are no longer passive consumers of power. Structures of almost every size are evolving into dynamic energy ecosystems capable of generating, storing and distributing their own electricity. Forming part of this exciting transformation are microgrids.

Read more...
Traditional data centres are not fit for purpose
IT in Manufacturing
Traditional data centre designs are falling short, with nearly half of IT leaders admitting their current infrastructure does not support energy or carbon-reduction goals. New research commissioned by Lenovo reveals that data centre design must evolve to future-proof businesses.

Read more...
AI agents for digital environment management in SA
IT in Manufacturing
The conversation about artificial intelligence in South Africa has shifted rapidly over the past year. Among the technologies changing the pace of business are AI agents - autonomous, task-driven systems designed to operate with limited human input.

Read more...
AI-powered maintenance in future-ready data centres
Schneider Electric South Africa IT in Manufacturing
The data centre marketplace often still relies on outdated maintenance methods to manage mission-critical equipment. Condition-Based Maintenance (CBM) is powered by AI and is fast becoming a necessity in ensuring both competitiveness and resilience.

Read more...
Powering up data centre mega development
IT in Manufacturing
Parker Hannifin has secured a major contract to supply key equipment for nearly 30 aeroderivative gas turbines powering a new hyperscale data centre in Texas.

Read more...
Building resilient supply chains through smarter e-procurement
RS South Africa IT in Manufacturing
In a time of constant disruption, from supply chain uncertainty to rising operational costs, businesses that embrace digital procurement are better positioned to stay competitive and resilient.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved