IT in Manufacturing


ABB technology can help make SA steel industry competitive

August 2021 IT in Manufacturing

South Africa’s steel industry needs to invest in technology like automation and data analytics if it is to improve its productivity to the point where it is globally competitive.

While sectors like aluminium are well advanced in automating their operations, and are ready to start digitalisation, the rest of the metals industry has lagged in its modernisation. This has not only impacted its ability to meet customer demands for increased product quality, throughput and yield, but has also affected downstream value-adding operations.

There are several good reasons why steel companies have not invested in new technology over recent years, including a negative market outlook, a preference to use labour instead of mechanisation, and the high cost of new equipment. One response is greater use of digital technologies, such as advanced data analytics. The idea is simple: if steel manufacturers were able to observe the status of equipment and processes in real time, they would gain crucial insight into deviations in product quality or problems with the process. This insight would allow operators to actively manage production, thereby increasing efficiency and reducing costs. But achieving this is easier said than done. To fully exploit the production potential of the local industry demands an integrated approach to automation optimisation, control and decision-support tools.

The good news is that many machines, like cold rolling mills, are often already equipped with modern control systems that use sensors to monitor and record data. And with sampling times in the range of milliseconds, hundreds of sensor values are recorded, including measurements of flatness, tension, speed and strip thickness. This data is routinely used by service engineers to commission and maintain various rolling mill devices – but it is rarely analysed for performance purposes, due to the difficulties of manual analysis and data pattern screening.

To help steel mill operators and maintenance engineers release the potential of their raw data and efficiently analyse the performance of their systems, a technology partner is required with deep domain knowledge and the ability to draw on the latest advances in neural networks and advanced data analytics applications for operational data. This combination of practical and digital expertise helps to create a digital service solution that addresses real-world challenges.

Creating the golden coil

In the first step on the road to digital awareness, a ‘golden coil’ is synthesised from available historical data: this is a fictional coil that consists of points when product quality and mill productivity were at their peak. The golden coil thus represents the operating modes in which the highest quality and productivity values were attained.

With this as a reference, deviations within the historical data can then be analysed, effectively teaching the system a range of functional behaviours which are classified from poor to excellent. Currently up to 100 different performance indicators are extracted from sensor measurements to compute the productivity and quality KPIs.

Once these have been calculated, the user can assess the performance of the coil currently in production by comparing it with the golden coil. The key point here is that once operators have a clear visualisation of the golden coil, they can compare it in real time with coils currently being produced, leading to faster troubleshooting.

ABB’s solution follows a conventional machine learning approach. Firstly, a model is created during a training phase, where the pattern of interest is characterised by examples as determined by a domain expert, and then used to teach the model. The model can then locate patterns within the time series data that are similar to the examples it has previously learned.

Going forward, AI is another concept with radical potential for steel mills. Although conventional signal processing is effective for certain use cases, it is not able to detect many relevant problems encountered by steel mill operators. For example, overshoot is an important characteristic of a control system that relates to step change. Common in cold rolling mills, measured overshoots all have similar visual appearances, but their shapes, waveforms and duration vary, making them hard to detect with classical signal processing methods. To counter this, ABB has developed an approach that can learn arbitrary patterns in time series data. The ability to track and analyse deviations in the performance of steel mills with data analytics is an important step in equipping operators for the challenging market conditions they face, and is the basis for collaborative solutions, such as performance optimisation services that combine continuous remote monitoring with process-specific data analytics and remote, expert support.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Transforming battery manufacturing processes
IT in Manufacturing
Siemens and Hirano Tecseed, a Japanese machine builder, are partnering to transform battery manufacturing processes.

Read more...
From Trojan takeovers to ransomware roulette
IT in Manufacturing
Cisco’s Cyber Threat Trends Report offers a comprehensive and overview of the evolving cybersecurity landscape, leveraging its vast global reach through the analysis of DNS traffic.

Read more...
The road to decarbonisation in mining
IT in Manufacturing
The mining industry is a key player in global carbon emissions, and ABB’s eMine is at the forefront of efforts to drive the sector’s decarbonisation.

Read more...
Siemens democratises AI-driven PCB design for small and medium electronics teams
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software is making its AI-enhanced electronic systems design technology more accessible to small and mid-sized businesses with PADS Pro Essentials software and Xpedition Standard software.

Read more...
Siemens’ PAVE360 to support new Arm Zena Compute Subsystems
IT in Manufacturing
Siemens Digital Industries Software is expanding its longstanding relationship with Arm and adding support for the newly launched Arm Zena Compute Subsystems in its PAVE360 software, designed for software-defined vehicles

Read more...
Empowering OEMs in industrial automation
Schneider Electric South Africa IT in Manufacturing
Organisations are increasingly focusing on empowering OEMs within the industrial automation sector

Read more...
Fortifying the state in a time of cyber siege
IT in Manufacturing
In an era where borders are no longer physical, South Africa is being drawn into a new kind of conflict, one fought not with tanks and missiles, but with lines of code and silent intrusions. The digital battlefield is here, and cyber space has become the next frontier of conflict.

Read more...
Levelling up workplace safety - how gamification is changing the rules of training
IT in Manufacturing
Despite the best intentions, traditional safety training often falls short, with curricula either being too generic, too passive, or ultimately unmemorable. Enter gamification, a shift in training that is redefining how businesses train for safety and live by those principles.

Read more...
Reinventing data centre design: critical changes to meet surging
Schneider Electric South Africa IT in Manufacturing
AI technologies are pushing the boundaries of what is possible which, in turn, is presenting data centres with a whole new set of challenges. Fortunately, several options are emerging which include optimising design and infrastructure for efficiency, cooling and management systems

Read more...
Watts next - can IT save the planet
IT in Manufacturing
The digital age’s insatiable demand for computing power has collided with an urgent and pressing need for sustainability. As data centres and AI workloads consume unprecedented energy, IT providers are pivotal in redefining how technology intersects with environmental stewardship.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved