Motion Control & Drives


Enhance machine safety with locking cylinders

March 2021 Motion Control & Drives

Stopping a pneumatic cylinder in emergency situations or during regular operations is essential to machine safety. Although there are many ways to solve this challenging application, stopping the flow of compressed air using an air circuit combined with a mechanical locking cylinder gives the most enhanced level of safety.

The energy in compressed air can be controlled and directed by solenoid valves to produce cylinder motion, but it can also be harnessed to abruptly stop cylinder motion.

The common way to stop cylinder motion is to direct the compressed air through a three-position, spring return, centre closed solenoid valve to trap the pressurised air on both sides of a cylinder in an e-stop situation. When electrical power is interrupted purposefully (e-stop), or accidentally, the spring return function will position the valve back to the centre, trapping the pressurised air and thus halting all motion.

Although stopping a cylinder with a pneumatic circuit can be highly effective, this method alone is not recommended for maintaining the cylinder in its stopped position, especially when it is bearing a heavy vertical load.

The primary reasons for not solely relying on a three-position, centre closed valve for holding cylinder position include:

• Risk of air leaking from the seals of the valve’s outlet ports.

• Risk of air leaking from the seals of the valve’s spools.

• Risk of the spring force not holding the valve in the centre closed position.

• Risk of cylinder drift caused by the area differential on the piston extend side vs. the retract side.

• Risk of air leaks from the overall system (fittings, tubing etc.)

All of these risks can be mitigated by adding a mechanical rod lock to the cylinder.

Locking cylinders come in two types: locking type or end lock of the rod at extension or retraction; and a braking type or fine lock, where the piston rod can stop and maintain a position at mid stroke. Both types of locking mechanisms can be activated by either applying or removing pressurised air from the braking unit.

Some common applications for locking or braking cylinders are:

• Press, clamping or holding a cylinder position for welding, drilling, etc.

• Stopping a cylinder to maintain a safety zone during repairs.

• Holding a static load.

• Drop prevention.

• Emergency stop.

Note: Installing a pressure regulator and flow controls to balance the air pressure for the circuit to adjust for piston area differential is also recommended when using an end lock or fine lock cylinder.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

More movement on the market
Motion Control & Drives
If you want to move something, you have to be able to control the movement. When positioning in the nanometre range everything matters and requires high performance motion control. Six years ago, Aerotech therefore set itself the goal of revolutionising the market for precision motion and machine control systems.

Read more...
Highly customisable robotic hand
Motion Control & Drives
NSK and the German Aerospace Centre are developing a robotic hand system that will help automate manual tasks. The concept centres on a customisable robot hand comprising individually configurable finger modules, an industry first.

Read more...
Electrically-operated diaphragm pumping solutions
Bearing Man Group t/a BMG Motion Control & Drives
BMG has extended its range of Ingersoll Rand ARO fluid handling products to include the new EVO series electric diaphragm pumps, designed to enhance energy efficiency and improve fluid handling productivity.

Read more...
Surface drill rigs for Navachab in Namibia
Motion Control & Drives
Epiroc South Africa recently delivered five of six FlexiROC drilling machines to key customer, Navachab Gold Mine.

Read more...
Grease degradation diagnosis technology
Motion Control & Drives
NSK is developing a world-first: a high-accuracy way of rapidly and accurately diagnosing the remaining life of lubricant grease. The company will provide the solution as a mobile app, enabling users to perform the onsite analysis of lubricant condition in bearings and linear motion systems.

Read more...
New compact VFDs with higher power ratings
Motion Control & Drives
Invertek Drives has revealed the extension of its industry-leading Optidrive Coolvert variable frequency drive with the launch of two new compact frame sizes with higher power ratings.

Read more...
Asset reliability care field dominated by WearCheck
Wearcheck Motion Control & Drives
Condition monitoring specialist, WearCheck has solidified its position as a leading player in the asset reliability care sector.

Read more...
Revolutionising manufacturing: the impact of machine learning in robotics
Motion Control & Drives
The integration of machine learning (ML) into robotics has the potential to revolutionise many industries, in particular the manufacturing sector. Yaskawa South Africa is at the forefront of embracing this transformative technology to optimise innovation and propel the manufacturing industry forward.

Read more...
Chain hoist friction clutch tester
WIKA Instruments Motion Control & Drives
WIKA’s FRKPS chain hoist test set is a reliable and efficient way to test the friction clutch on your chain hoist.

Read more...
Why artificial intelligence matters in robotic technology
Motion Control & Drives
Andrew Crackett, managing director of Yaskawa Southern Africa, gives his insight into the role of AI in robotics technology, with its advantages and challenges, and makes predictions for the future.

Read more...