Maintenance, Test & Measurement, Calibration


Keep our bridges standing

February 2021 Maintenance, Test & Measurement, Calibration

Most bridges are constructed using steel rebar reinforced concrete and many use cathodic protection (CP) systems to keep the vital steel reinforcement from corroding. This article discusses the problems inherent to CP system monitoring, and describes the modern approaches that make it feasible.

With tens of thousands of these types of bridges in the UK alone, the sheer scale and quantities of these structures has no true comparison anywhere else in engineering. Just the road infrastructure in the UK stretches over thousands of miles, all of which needs to be carefully maintained and continuously monitored.

A big part of keeping road infrastructure standing and safe over many decades is by using CP, both impressed current (ICCP) and galvanic CP. These systems induce a positive charge in the reinforcing steel rebar, which repels the positively charged chemical radicals that would normally corrode the steel. In ICCP systems, this charge is induced by an external power supply, while galvanic systems use a sacrificial anode, formed from a material with a greater electrochemical potential than the steel rebar, such as zinc.

Unmonitored variables

England’s road network’s executive agency, Highways England, recently published CD 370 Revision 2, a design document for CP systems for its reinforced concrete highway structures. This document clearly states in section 4.13: “All CP systems shall be designed with full system monitoring.” This is due to the fact that they discovered that historically, some galvanic systems were installed without any monitoring facilities, which prevented accurate performance assessment of these systems and negated any potential benefits associated with an evidence-based management strategy.

A problematic task

So, how is one supposed to know if a CP system is even working if it is not being monitored?When left unmonitored, there is no way to be sure that the system is functioning. It could have been damaged, or could even have not been installed correctly in the first instance. The install-and-ignore approach leaves endless scope for malfunction while exhibiting no external warning signs until it is too late.

When compared to ICCP systems, remotely monitoring galvanic CP systems is a far more difficult proposition, because they work with passive electrochemical currents. This makes them ideal when power and telecom access is not available, but it can be very costly and time consuming for the engineers who need to travel to the structure and physically measure the galvanic CP current with a multimeter.

Furthermore, there may be hundreds of discrete galvanic CP circuits on a bridge, which quickly adds up across the tens of thousands of bridges in the UK.

Using the data highways

So, how do you monitor tens of thousands of critical assets, spread over thousands of miles and often found in remote places? One way is to send the monitored data over the Internet.

Omniflex’s iGAL galvanic CP monitor is unique in this arena. It is battery powered and so can be installed quickly and easily. It really is as simple as connecting up the anodes, reference electrode half-cells, and switching it on.

The wireless and SMS capabilities further remove the requirement for any local networks. Instead, the iGAL transmits its data entirely wirelessly to the web-based PowerView CP portal, which can be accessed through a web browser via a secure password from anywhere across the globe.

By using galvanic CP remote monitoring systems like the iGAL, the imposing and time-consuming job of physically monitoring galvanic CP assets becomes so much easier. Instead of jumping in the van and closing part of the highways to physically measure CP equipment, engineers can now monitor CP assets from anywhere in the world through the PowerView CP portal. Any problems are immediately reported by SMS and emails, and tests can be performed remotely.

It’s remarkable the work that goes into keeping seemingly stationary pieces of infrastructure safe and standing. CP is crucial to keep these assets structurally sound, but remotely monitoring them to ensure they’re working as they should is just as crucial.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Improved networking technology for fire and gas detection
Omniflex Remote Monitoring Specialists Fieldbus & Industrial Networking
Critical alarm and event management technology supplier, Omniflex has worked with the South African Nuclear Energy Corporation to upgrade equipment providing digital and analogue signals for its safety critical fire and gas alarm systems.

Read more...
Novel closed-loop CP technology for corrosion control
Omniflex Remote Monitoring Specialists Industrial Wireless
Cathodic protection specialist, Omniflex has collaborated with researchers at Deakin University to develop corrosion monitoring electronics for a novel closed-loop cathodic protection system for localised corrosion control in challenging industrial environments.

Read more...
How industrial network design impacts ESG commitments
Omniflex Remote Monitoring Specialists Fieldbus & Industrial Networking
In safety-critical industries like nuclear, petrochemical and oil and gas, installing a new industrial cable network is an extremely complicated task. Gary Bradshaw, a director of industrial network specialist, Omniflex explains why this is often unnecessary as plants are likely to have existing cabling capable of being used to create new industrial networks.

Read more...
How CP system design can support ESG commitments
Omniflex Remote Monitoring Specialists Industrial Wireless
Major infrastructure like wharves, bridges, pipelines and tanks are under constant threat of corrosion, which can render them unsafe. David Celine, managing director of cathodic protection specialist, Omniflex explains how CP system design can support ESG commitments while simultaneously lowering costs and improving maintenance capabilities.

Read more...
Automated test and measurement
Comtest Maintenance, Test & Measurement, Calibration
Comtest, in partnership with global brands, provides customised solutions with integrated hardware and software for efficient testing and data collection.

Read more...
Advanced field calibrator and communicator
Maintenance, Test & Measurement, Calibration
The Beamex MC6 is a high-accuracy field calibrator that offers automatic calibration capabilities for pressure, temperature and various electrical signals.

Read more...
Inline particle measurement
Mecosa Maintenance, Test & Measurement, Calibration
Part of the SOPAT family, Parsum has for more than 20 years stood for the measurement of particles in a running process - without sampling and without a laboratory.

Read more...
Inline analysis measurement technology
Mecosa Maintenance, Test & Measurement, Calibration
SOPAT develops and sells a photo-optical and image-based inline analysis measurement technology that quantitatively characterises particulate multi-phase systems. The software provides real-time analysis of particle size distribution.

Read more...
Providing visibility over critical infrastructure
Omniflex Remote Monitoring Specialists Fieldbus & Industrial Networking
Sequence of event recorders or sequence of event monitors play a significant role in monitoring and maintaining critical infrastructure. Gary Bradshaw, director at remote monitoring equipment specialist, Omniflex, outlines the applicable industries and reasons for use.

Read more...
UV water treatment system
Maintenance, Test & Measurement, Calibration
bestUV is an innovative manufacturer of professional ultraviolet (UV) water treatment systems for industrial markets.

Read more...