Motion Control & Drives


What is adaptive acceleration control?

November 2020 Motion Control & Drives

Adaptive acceleration control (AAC) is a new soft start control type that allows the selection of different acceleration and deceleration profiles according to application needs. Soft starters offer a variety of methods for the control of motor starting and stopping. Each type of the control uses a different primary control parameter.

Constant current is the traditional form of soft starting, which raises the current from zero to a specified level and keeps the current stable at that level until the motor has accelerated. Constant current starting is ideal for applications where the start current must be kept below a particular level.

Current ramp soft starting raises the current from a specified starting level to a maximum limit over an extended period of time. Current ramp starting can be useful for applications where the load varies between starts, the load breaks away easily but starting time needs to be extended, or the electricity supply is limited.

Kickstart provides a short boost of extra torque at the beginning of a start, and can be used in conjunction with current ramp or constant current starting. Kickstart can be useful to help start loads that require high breakaway torque but then accelerate easily (for example flywheel loads such as presses).

AAC is a new intelligent motor control technique. In an AAC soft start, the ASAB soft starter adjusts the current in order to start the motor within a specified time and using a selected acceleration profile. It is based on two algorithms, one for measuring (learning) the motor characteristics and one for controlling the motor. During each start it makes two speed estimates, zero speed at LR and maximum speed at the point when the motor is operating at maximum efficiency. During subsequent start and stop operations, measuring the motor characteristics and using this value to determine the speed between the two known end points provides an estimate of motor speed. The control algorithm creates a time based speed profile which can create curves from a mathematical function. During each start and stop operation the control algorithm compares the speed estimate with the speed ramp profile. If the speed estimate is too low it increases the power to the motor and decreases the power when it is too high. This allows for control of the three accelerating and three decelerating profiles, and if the motor does not start and stop smoothly to fine-tune adjust the adaptive control gain.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Complete mine hoist systems
Motion Control & Drives
From friction to single and double drum hoists, ABB is a complete supplier of various types of mine hoist systems.

Read more...
Innovative braking technology for heavy-duty hoists
Motion Control & Drives
The electro-hydraulic disc brakes in the DX series from RINGSPANN have been re-engineered, and are proving to be a trendsetter in the holding and emergency stop systems in the hoists of heavy-duty and container cranes.

Read more...
These robots crawl into every nook and cranny
DNH Tradeserve t/a DNH Technologies Motion Control & Drives
Inuktun's small crawler robot magnetically sticks to metal walls and is able to move in all directions. It carries cameras, sensors and tools for inspection or maintenance work in tight pipes and on the outer hulls of tanks or ships. All crawler modules and cameras are equipped with brushed DC motors from Swiss drive specialist, maxon using various motor-gearhead combinations.

Read more...
Proven drive technology solutions for the sugar industry
SEW-EURODRIVE Motion Control & Drives
As the South African sugar industry continues to optimise efficiency, uptime and sustainability across cane handling, processing and refining, SEW-EURODRIVE is helping drive this momentum with its world-class drive technology and local service support.

Read more...
Largest private wind farm in South Africa
Motion Control & Drives
The Witberg wind farm will prevent the emission of more than 420 000 tons of CO2 per year in 122 000 households in the Western Cape.

Read more...
The environmental benefits of correct lubrication storage
Motion Control & Drives
While selecting the right lubricant for an application is key, how that lubricant is stored between applications is an often overlooked but critical aspect of reducing contaminants in machinery across a plant or site.

Read more...
Sustainability is transforming fluid power
Editor's Choice Motion Control & Drives
Sustainability is reshaping the future of fluid power. With the growing demand for cleaner, more efficient technologies and tightening global regulations, fluid power systems are being re-engineered for higher efficiency, lower emissions and reduced material usage.

Read more...
Demystifying demulsifier additives
Wearcheck Motion Control & Drives
Water is one of the most destructive contaminants in lubricants. Demulsifier additives prevent the formation of a stable oil-water mixture or an emulsion by changing the interfacial tension of the oil so that water will coalesce and separate more readily from the oil.

Read more...
A turnkey drive solution to guarantee performance and reduce lead times
SEW-EURODRIVE Motion Control & Drives
[Sponsored] The introduction of SEW-EURODRIVE’s TrueDNA package responds directly to challenges faced by industry when mixing components from multiple suppliers in a drive solution.

Read more...
Speeding up warehouse automation
Rockwell Automation Editor's Choice Motion Control & Drives
Bastian Solutions designs and delivers world-class material handling systems. The company was engaged by a high-end global fashion brand to implement a new warehouse system. Bastian used Rockwell Automation Emulate3D digital twin software to test the system before it was installed and went live.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved