Mass Measurement


A real-time alternative to radiometric density measurement

September 2019 Mass Measurement

Currently, in mining applications, radiometric measurement has been the only way to measure the density of slurry. Until recently, and due to the harsh and abrasive environment of slurry, no other measuring principle could work. This has recently changed due to the use of tuning forks (FTL 50) in conjunction with density computers (FML621).

The reason why radiometric density is unpopular is not because the principle of measurement does not work – on the contrary it works well and with very few issues. The problem with radiometric density measurement is the red tape that surrounds the measurement point. To have radiometric measurement a site needs to conform to certain local and international standards. A radiation officer needs to be permanently on site in case of an accident. Training around safe practices with radiation needs to be performed and complex and costly transportation regulations need to be followed. These are some of the challenges that plants face when it comes to radiometric measurement for density.

This process is becoming less challenging with the introduction of a tuning fork that can measure slurry density. Depending on the slurry application, correctly installed tuning forks can now last longer than 12 months before they require any maintenance.

The tuning fork principle

Vibration limit switches are mechanical systems vibrating at their resonant frequency. A piezo drive, the core element of the sensor, generates drive impulses that are transferred to a stainless-steel tuning fork, the only part of the system which comes into contact with the product. Due to this well-known piezo effect, it is possible to make the tuning fork resonate and measure the shift in resonant frequency. The limit switch also analyses the resonant frequency at which the fork vibrates. Thanks to this cleverly employed technical feature, limit switches have reinvented themselves as fully-fledged density measuring instruments, which fulfil user requirements for information directly from the process and provide a cost-effective alternative to established measurement methods, such as manual sampling. Parameters such as conductivity or dielectric constant, do not interfere with the function of the sensor. However, temperature compensation is recommended to achieve highest accuracy. If a pressure changes in the process by more than six bar, then pressure compensation will also be required.

The measuring principle is based on the fact that the resonant frequency of the tuning fork depends on the density of the product, the process temperature and pressure. Changes to the resonant frequency are directly affected by the density of the material. Materials with a lower density such as liquefied gas give rise to higher resonant frequency than materials with a greater density such as water. The density of the medium can be accurately calculated using mathematical formulae depending on the resonant frequency, temperature and pressure. The frequency shift is, therefore, used to measure changes to density levels caused by different liquids or concentrations. Combined with a density calculator, the corresponding density value of the medium can be calculated from the resonant frequency in a reliable and reproducible manner. Fluctuating process temperature near the tuning fork should also be measured by a temperature sensor, which is then recorded and compensated in the density computer. Therefore, influences on the density value are taken into account.

Factors to consider when installing a tuning fork in a flow density application include:

• Vertical installations are recommended.

• Eliminate air bubbles.

• Eliminate build up while empty.

• Low (0-2 m/s) velocity.

• Fine slurry particles (0,15 mm).

For more information contact Dhiren Naidoo, Endress+Hauser, +27 11 262 8000, [email protected], www.za.endress.com



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Sustainability of surface water
Endress+Hauser South Africa Analytical Instrumentation & Environmental Monitoring
The sustainability of surface water is critical for South Africa’s economic development, social well-being and environmental health. Endress+Hauser has a full range of liquid analysis sensors and transmitters to measure important parameters and has an excellent global track record in water and wastewater process plants and various surface and industrial water monitoring sites.

Read more...
Cloud-based inventory management software
Endress+Hauser South Africa Level Measurement & Control
Netilion is an award-winning cloud-based IIoT ecosystem designed for industrial processes. It connects the physical and digital worlds to send valuable information from the field straight to your phone, tablet or other device.

Read more...
How wet steam undermines boiler efficiency
Endress+Hauser South Africa Temperature Measurement
Endress+Hauser understands the daily challenges and demands placed on energy and utility managers across the spectrum of steam generation, distribution and consumption activities. Its global team is committed to working with its partners to overcome these complexities, and particularly those that aim for a safe, economic and sustainable sitsce of steam energy production and delivery.

Read more...
Automated clean-in-place
Endress+Hauser South Africa Sensors & Transducers
A clean-in-place (CIP) process is integral to a food and beverage producer’s responsibility to deliver safe, high-quality products to consumers. However, as industries worldwide shift focus towards sustainability, CIP procedures face new challenges.

Read more...
SICK and Endress+Hauser to join forces in process automation
Endress+Hauser South Africa News
German sensor company SICK, and Swiss measurement and automation technology specialist Endress+Hauser, want to intensify their cooperation. Both companies are aiming for a strategic partnership for SICK’s process automation business segment and have signed a joint memorandum of understanding.

Read more...
Accurate flowmeter for oil & gas
Endress+Hauser South Africa Flow Measurement & Control
Promass Q, the high-tech Coriolis flowmeter from Endress+Hauser, is now also available for larger pipe sizes with maximum flow rates between 850 and 2400 tph.

Read more...
Optimising CIP processes with precision instrumentation
Endress+Hauser South Africa Flow Measurement & Control
Many food and beverage manufacturers encounter challenges with CIP processes that take too long. Have you considered exploring potential solutions to address these issues?

Read more...
A quick guide to disinfection
Endress+Hauser South Africa Analytical Instrumentation & Environmental Monitoring
The distribution system in a drinking water network provides a reliable supply of high-quality water to consumers. Endress+Hauser’s range of robust, low-maintenance sensors are ideal for monitoring disinfectant levels in the water.

Read more...
How wet steam undermines boiler efficiency
Endress+Hauser South Africa Flow Measurement & Control
The Endress+Hauser team understands the daily challenges and demands placed upon energy and utility managers across the spectrum of steam generation, distribution and consumption activities. Its global team is committed to working with its partners to overcome these complexities and particularly those that challenge a safe, economic and sustainable source of steam energy production and delivery.

Read more...
Optimising power consumption in wastewater treatment plants
Endress+Hauser South Africa Electrical Power & Protection
There are many opportunities in the wastewater industry to respond to climate change challenges. This includes improving energy efficiency, reducing greenhouse gases, and generating own energy.

Read more...