System Integration & Control Systems Design


Machine learning for all areas of automation

June 2019 System Integration & Control Systems Design

Beckhoff now offers a machine learning (ML) solution that is seamlessly integrated into TwinCAT 3 software. Building on established standards, TwinCAT 3 Machine Learning brings to ML applications the advantages of system openness from PC-based control. In addition, the TwinCAT solution supports machine learning in real-time, allowing it to handle even demanding tasks like motion control. These capabilities provide machine builders and manufacturers with an optimum foundation to enhance machine performance, e.g. through prescriptive maintenance, process self-optimisation and autonomous detection of process anomalies.

The fundamental concept of machine learning is not to follow the classic engineering route of designing solutions for specific tasks and then turning these into algorithms, but to learn the desired algorithms from process data instead. With this alternative approach, powerful ML models can be trained and then used to deliver superior solutions. In automation technology, this opens up new possibilities and optimisation potential in many areas, including predictive maintenance and process control, anomaly detection, collaborative robotics, automated quality control and machine optimisation.

The models to be learned are trained in an ML framework, such as MATLAB or TensorFlow, and then imported into the TwinCAT runtime via the Open Neural Network Exchange Format (ONNX), a standardised data exchange format used to describe trained models. The TwinCAT runtime incorporates the following new functions for this purpose:

• TwinCAT 3 Machine Learning Inference Engine for classic ML algorithms, such as support vector machine (SVM) and principal component analysis (PCA).

• TwinCAT 3 Neural Network Inference Engine for deep learning and neural networks, such as multilayer perceptrons (MLPs) and convolutional neural networks (CNNs).

Model results are directly executable in real-time

Inference i.e. the execution of a trained ML model, can be performed directly in real-time with a TwinCAT TcCOM object. With smaller networks, system response times of less than 100 s corresponding to a TwinCAT cycle time of 50 s are supported. Models can be called via PLC, C/C++ TcCOM interfaces or a cyclical task.

Through seamless integration with the control technology, the multi-core support provided by TwinCAT 3 is also available for machine learning applications. This means, for instance, that different task contexts can access a particular TwinCAT 3 Inference Engine without restricting each other. All the fieldbus interfaces and data available in TwinCAT can be fully accessed as well. This allows ML solutions to use immense amounts of data, for example, for complex sensor data fusion (data merging), and it also means that real-time interfaces to actuators are available to enable, among other things, optimal control.

For more information contact Michelle Murphy, Beckhoff Automation, +27 11 795 2898, [email protected], www.beckhoff.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Flexible EtherCAT communication interface for DALI-2
Beckhoff Automation Fieldbus & Industrial Networking
The EL6821 EtherCAT Terminal from Beckhoff allows up to 64 DALI/DALI-2 slaves and 64 DALI-2 input devices to be connected. The TwinCAT 3 System Manager makes it easy to configure and parameterise DALI devices flexibly.

Read more...
EtherCAT-based control technology for building automation
Beckhoff Automation Fieldbus & Industrial Networking
Modern non-residential buildings place many high demands on building automation. This can be optimally implemented with EtherCAT-based control technology from Beckhoff, which provides an efficient central automation architecture thanks to ultra-fast data communication.

Read more...
PC-based control for university studies
Beckhoff Automation Fieldbus & Industrial Networking
The IDEA box developed at Heilbronn University of Applied Sciences is designed to introduce students to the topic of Industry 4.0 in a simple and practical way. At the core of the corresponding demo case is PC-based control from Beckhoff.

Read more...
Understanding the role of AI in generative engineering design
System Integration & Control Systems Design
When a design engineer sets out to design a new part, component, or assembly, the intent is to meet the design requirements for fit, form and function, and also incorporate a certain degree of innovation and elegance to the overall design. There is no reason to re-invent the wheel by introducing a new design.

Read more...
PCS stays up so you don’t have to
PCS Global System Integration & Control Systems Design
Maybe it’s time to look at a solution that stays online 99,99999% of the time so you don’t have to. This the world of Stratus computer platforms, tailor-made for your critical applications.

Read more...
High-performance motion control for teabag packaging machine
Beckhoff Automation Editor's Choice
Teepak relies on PC-based control and drive technology from Beckhoff to set new benchmarks for speed and precision in its teabag packaging machines.

Read more...
Four ways the global parts shortage has led to innovation and openness
System Integration & Control Systems Design
For those who use automation parts, the unpredictable nature of the supply chain is one of the biggest problems faced today. The shortfall has impacted every industry, but automation components have been especially affected.

Read more...
Complete system for transparent energy monitoring
Beckhoff Automation Editor's Choice Electrical Power & Protection
Transparent energy monitoring reduces both machine downtime and the necessity to oversize the corresponding components. Added to these advantages are simplified preventive maintenance, and increased production efficiency. The wide range of PC-based control technology from Beckhoff offers a solution that can be optimally adapted to individual applications.

Read more...
Iritron’s year of consolidation
Iritron Editor's Choice System Integration & Control Systems Design
Despite the multiple challenges faced by businesses in South Africa, the buoyancy of the technology sector worldwide has produced some green shoots for automation specialist, Iritron.

Read more...
Five edge opportunities for SIs to maximise revenue in 2024
Editor's Choice System Integration & Control Systems Design
System integrators continue to face the challenge of doing more with less – supporting complex operations, while meeting production schedules with limited resources, and innovating to increase efficiency, maximise safety and reduce risk.

Read more...