Temperature Measurement


How accurate is your infrared ­pyrometer?

August 2015 Temperature Measurement

A thermal imaging camera only reads the electromagnetic radiation it receives in a specific range of wavelengths. To display this reading the camera makes several calculations to convert data into actual temperature, and one that is vitally important is emissivity.

Emissivity is efficiency with which an object emits infrared radiation at a given temperature by comparison with a black body at the same temperature and with the same surroundings. Values range from 1.0 for lampblack down to 0,02 for polished silver. And in most cases the pyrometer/camera readings need to be adjusted to take this emissivity into account.

If its value is incorrect, the actual temperature will be exponentially different to the display temperature; the Stefan-Boltzmann law explains the science behind this. Worse still the margin increases in line with temperature so the results are not just different, but seriously skewed. A phase imbalance that may seem to be just a few degrees can actually be upwards of 30°C.

The temperature of the steel and the tape should be the same, but a 4°C error due to emissivity is observed.
The temperature of the steel and the tape should be the same, but a 4°C error due to emissivity is observed.

The visual set-up of the pyrometer/camera would be the only other way of determining the severity of the fault. But as any experienced thermographer will tell you, the visual component is not a reliable alternative. Depending on the level, span and range on the pyrometer/camera it is still very easy to miss a severe problem. It is therefore vital that users understand emissivity and how to set-up a thermal imaging camera accordingly. Understanding the basics of infrared temperature measurement is easy; just send an e-mail to [email protected] with your details and the company will e-mail back a booklet covering the basics.

The safe practice of using infrared windows on switchgear and other inspection points, rather than removing covers whilst equipment is live, is becoming more of a requirement and can introduce errors in readings if not done correctly.

With windows the infrared passes through a very specific material and some intensity is lost. Almost all cameras and pyrometers have a transmissivity setting that compensates for this. Also different materials react in different ways. The polymer based windows have a fixed transmissivity that is compensated for on installation, whilst crystal based windows vary throughout their lifetime as they are hydroscopic and absorb moisture which affects their transmisivity.

The coffee cup test is a simple way to check the transmission of any infrared window. Use it before installation and during regular IR window maintenance.

1. Pour hot water into a cup and place a target of known emissivity on the side, such as a strip of electrical tape or an IR-ID label.

2. Set the camera’s transmission to 1.

3. Measure the temperature of the target without the IR window.

4. Place the window in front of the camera and complete the measurement again.

5. Use the camera or the reporting software to change the transmission coefficient of the image until the adjusted temperature (taken through the window) and the original temperature are the same.

6. Record the transmission rate on the IR window label and in the report template for future reference.

For more information contact R&C Instrumentation, 086 111 4217, [email protected], www.randci.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Noncontact infrared temperature control in aluminium rolling process
Instrotech Temperature Measurement
The aluminium rolling process is critical to the aluminium manufacturing industry, where precise temperature measurement is essential for ensuring high-quality product output and protecting equipment. The Optris long-wavelength camera can accurately measure strip temperatures in cold rolling and coiling applications.

Read more...
Where simplicity meets reliability
Endress+Hauser South Africa Temperature Measurement
The new iTEMP TMT31 temperature transmitter from Endress+Hauser combines simplified selection, ordering, installation and operation with the highest reliability and long-term stability in one product.

Read more...
Automating car window defrosters
Temperature Measurement
Window defrosters are vital features in vehicles, particularly in colder climates. The automotive manufacturer seeks an efficient solution to quickly and precisely measure the temperature of the windows, ensuring that the connections, installed cables and wires work correctly and have no defects before the vehicle’s final release.

Read more...
The impact of thermal imaging in steam methane reformers
Temperature Measurement
As global demand for hydrogen, ammonia and fertilisers increases, LAND is empowering steam methane reformer operators to unlock efficiency gains at existing plants to meet ambitious production targets while also safely decarbonising.

Read more...
Proven indicators monitored in three dimensions
ifm - South Africa Temperature Measurement
The VVB30x continuously detects vibrations in three measurement axes and uses them to calculate proven indicators for evaluating machine condition.

Read more...
Digital display electronic sensors
Transducer Technology Temperature Measurement
The Trantech TTED series is a versatile range of digital display sensors designed for high-accuracy measurement of pressure, flow and temperature.

Read more...
Quality process control instrumentation
Instrotech Temperature Measurement
Instrotech is a leading provider of high-quality process control instrumentation and industrial automation solutions that are designed to optimise efficiency, reliability and safety across industries.

Read more...
Three ways to conduct thermal inspections
Comtest Temperature Measurement
There’s no universal solution for all infrared inspections with a Fluke thermal camera, also known as a thermal imager. You need to match your method to the type of equipment you’re inspecting and the level of detail you require.

Read more...
Modern N1020 temperature controller
Temperature Measurement
Temperature control is a fundamental aspect of maintaining the integrity and quality of products in industries such as food processing, pharmaceuticals and healthcare. The N1020 temperature controller, designed for precision and reliability, addresses the stringent requirements of these sectors by offering advanced features and robust functionality.

Read more...
Safer, simpler temperature measurement
ABB South Africa Temperature Measurement
ABB has launched an enhanced version of its NINVA TSP341-N non-invasive temperature sensor, delivering safer and simpler temperature measurements for applications in the chemical, oil and gas industries.

Read more...