Motion Control & Drives


World’s smallest flying robot

April 2014 Motion Control & Drives

Harvard researchers have demonstrated the first controlled flight of an insect-sized robot. Half the size of a paperclip and weighing less than a tenth of a gram, it can leap a few inches, hover for a moment on fragile, flapping wings, and then speed along a preset route through the air.

With two wafer-thin wings that flap almost invisibly, 120 times per second, the tiny device represents the absolute cutting edge of micro manufacturing and control systems. Flight muscles, for instance, don’t come pre-packaged for robots the size of a fingertip. “Large robots can run on electromagnetic motors, but at this small scale you have to come up with an alternative,” says Professor Robert Wood, principal investigator at Harvard’s School of Engineering and Applied Sciences (SEAS).

Flies are among the most agile flying creatures on earth. To mimic this aerial prowess in a similarly sized robot required tiny, high-efficiency mechanical components that posed miniaturisation challenges requiring unconventional solutions for propulsion, actuation, and manufacturing. Other researchers have built robots that mimic insects, but this is the first two-winged robot built on such a small scale that can take off using the same motions as a real fly. The dynamics of such flight are very complicated.

The researchers achieved this wing speed with special high-power density piezoelectric actuators – strips of ceramic that contract and release when power is switched on and off. By constantly adjusting the effect of lift and thrust acting on its body at an incredibly high speed, the robot’s flapping wings enable it to hover almost motionless in the air or perform sudden evasive manoeuvres. Thin hinges of plastic, embedded within the carbon fibre body frame, serve as joints, and a delicately balanced control system commands the rotational motions in the flapping wings, with each wing controlled independently in real time. At tiny scales, small changes in airflow can have an outsized effect on flight dynamics, and the control system has to react that much faster to remain stable.

The Robo-fly also takes advantage of an ingenious pop-up manufacturing technique that was developed by Wood’s team in 2011. Sheets of various laser-cut materials are layered and sandwiched together into a thin, flat plate that folds up like a child’s pop-up book into the complete electromechanical structure. The quick, step-by-step process replaces what used to be a painstaking manual art and allows Wood’s team to use more robust materials in new combinations, while improving the overall precision of each device.

“Applications of the project could include distributed environmental monitoring, search-and-rescue operations, or assistance with crop pollination, but the materials, fabrication techniques, and components that emerge along the way might prove to be even more significant,” says co-lead author Kevin Ma, a graduate student at SEAS.

The prototypes are still tethered by a very thin power cable because there are no off-the-shelf solutions for energy storage that are small enough to be mounted on the robot’s body. High energy-density fuel cells must be developed before the Robo-fly will be able to fly with independence. The next steps will involve integrating the parallel work of many different research teams who are working on the brain, the colony co-ordination behaviour and the power source until the robotic insects are fully autonomous and wireless.

“This work is a beautiful example of how bringing together scientists and engineers from multiple disciplines to carry out research inspired by nature and focused on translation can lead to major technical breakthroughs,” says Wood. “This project provides a common motivation for scientists and engineers across the university to build smaller batteries, to design more efficient control systems, and to create stronger, more lightweight materials,” he adds. “I want to create something the world has never seen before,” continues Ma. “It’s about the excitement of pushing the limits of what we think we can do – the limits of human ingenuity.”

For more information visit http://tinyurl.com/qbwtqfd





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Cutting-edge robotics and smart manufacturing solutions
Yaskawa Southern Africa Motion Control & Drives
Yaskawa Southern Africa made a compelling impact at this year’s Africa Automation and Technology Fair

Read more...
Medium voltage drive for enhanced energy efficiency and process optimisation
Schneider Electric South Africa Motion Control & Drives
Schneider Electric South Africa has unveiled its cutting-edge Altivar Process ATV6100 medium voltage (MV) drive range, designed to enhance energy efficiency and operational reliability across various industries.

Read more...
Powerful high-precision hexapod
Motion Control & Drives
With the HEX150-125HL, Aerotech is launching the latest generation of its hexapod technology. The compact six-axis positioner combines precise movements with high load capacity and simple integration.

Read more...
Servicing the electric motor sector
Motion Control & Drives
Hexagon Electrical has expanded its manufacturing and service capabilities to meet the growing demand for customised, high-performance specialised electric motors in heavy engineering, and hazardous industrial and mining applications.

Read more...
Control system for deep antenna
Rockwell Automation Motion Control & Drives
When a major university in South Korea set out to build a 21-metre deep space antenna, the researchers needed a control system that could track celestial objects with pinpoint accuracy, a level of precision they thought was out of reach. By partnering with Rockwell Automation, they discovered that the right technology and support could turn their vision into reality.

Read more...
Manufacturers should go PFAS-Free
igus Motion Control & Drives
igus continues to develop engineered plastics that are free of per- and polyfluoroalkyl substances (PFAS-free) in response to mounting evidence of severe environmental and health hazards caused by the chemicals.

Read more...
South African paper producer partners with ABB
Motion Control & Drives
Neopak, a leading manufacturer of containerboard and paper products, has renewed its partnership with global technology company, ABB to upgrade the existing automation system at its Rosslyn Paper Mill in Pretoria.

Read more...
ABB supplies electromagnetic stirrer to world’s largest electric arc furnace
Motion Control & Drives
ABB has secured an order from Çolakoglu Metalurji. for an ArcSave electromagnetic stirrer to be installed on one of the world’s largest electric arc furnaces (EAF)

Read more...
Compact, powerful and green mini-picker
Motion Control & Drives
SkyJacks has introduced Jekko’s Mini Picker to the southern African market. This is a compact, highly versatile and environmentally friendly electric mini-picker that is set to redefine lifting capabilities across multiple industries.

Read more...
Redefining industrial lifting
Motion Control & Drives
The Konecranes S-series hoist redefines industrial lifting through its integration of a ground-breaking synthetic rope with smart features, a lifting capacity of 20 tons, and the ability to adapt to diverse girder configurations.

Read more...