IT in Manufacturing


Essential data centre health checks

August 2013 IT in Manufacturing

At present, vendors are designing servers that can demand over 40 kW of cooling per rack. With most data centres designed to cool an average of no more than 2 kW per rack, innovative strategies must be used for proper cooling of high-density equipment.

According to Schneider Electric, just as an automobile benefits from regular servicing, a data centre needs to be kept operating at peak efficiency to maintain the business processes it supports and to prevent future problems. Before embarking upon expensive upgrades to the data centre to deal with cooling problems, certain checks should be carried out to identify potential flaws in the cooling infrastructure.

These checks will determine the health of the data centre in order to avoid temperature-related IT equipment failure. “They can be used to assess the availability of sufficient cooling capacity for the future,” says Eben Owen, E&S sales manager at Schneider Electric South Africa.

The current status should be reported and a baseline established to ensure that subsequent corrective actions result in improvements. A cooling system check-up should include these nine items:

1. Maximum cooling capacity: if there is not enough petrol in the tank to power the engine then no amount of tweaking will improve the situation. Check the overall cooling capacity to ensure that the IT equipment in the data centre does not exceed it. “One watt of power consumed needs one watt of cooling. Excess of demand over supply will require major re-engineering work or the use of self-contained high-density cooling solutions,” says Owen.

2. CRAC (computer room air conditioning) units: measured supply and return temperatures and humidity readings must be consistent with design values. Check set points and reset if necessary. A return air temperature considerably below room ambient temperature would indicate a short circuit in the supply air path, causing cooled air to bypass the IT equipment and return directly to the CRAC unit. “Check that all fans are operating properly and that alarms are functioning. Ensure that all filters are clean,” adds Owen.

3. Chiller water/condenser loop: check condition of the chillers and/or external condensers, pumping systems, and primary cooling loops. Ensure that all valves are operating correctly. Make sure that DX systems, if used, are fully charged.

4. Room temperatures: test temperatures at strategic positions in the aisles of the data centre. Owen explains that these measuring positions should generally be centred between equipment rows and spaced approximately every fourth rack position.

5. Rack temperatures: measuring points should be at the centre of the air intakes at the bottom, middle and top of each rack. These temperatures should be recorded and compared with the manufacturer’s recommended intake temperatures for the IT equipment.

6. Tile air velocity: if a raised floor is used as a cooling plenum, air velocity should be uniform across all perforated tiles or floor grilles.

7. Condition of subfloors: “Any dirt and dust present below the raised floor will be blown up through vented floor tiles and drawn into the IT equipment,” says Owen. “Under-floor obstructions such as network and power cables obstruct airflow and have an adverse effect on the cooling supply to the racks.”

8. Airflow within racks: gaps within racks (unused rack space without blanking panels, empty blade slots without blanking blades, unsealed cable openings) or excess cabling will affect cooling performance.

9. Aisle and floor tile arrangement: effective use of the subfloor as a cooling plenum critically depends upon the arrangement of floor vents and positioning of CRAC units.

Installation of the latest blade-server technology provides many benefits. However, these servers, if deployed as compactly as their size allows, draw two to five times the per-rack power of traditional servers and generate heat output that can easily cause thermal shutdown if proactive cooling strategies are not employed. Owen stresses that to avoid outright equipment failures, unexplained slowdowns and shortened equipment life, it is becoming critically important to implement a regular health check regime to ensure that cooling equipment is operating within the design values of capacity, efficiency and redundancy.

For more information contact Belinda Aslett, Schneider Electric SA, +27 (0)11 254 6400, [email protected], www.schneider-electric.com



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

All eyes on the modern DCS platform
Schneider Electric South Africa PLCs, DCSs & Controllers
Modernised DCS platforms are no longer confined to hardware-dependent architectures. These systems have evolved to combine the strengths of both PLCs and DCS while adding capabilities that make them more open, resilient and collaborative.

Read more...
Why choose between Capex and Opex if you can Totex?
Schneider Electric South Africa IT in Manufacturing
In a sector marked by cyclical demand, high capital intensity, and increasing regulatory and sustainability pressures, mining, minerals and metals (MMM) companies are re-evaluating how they approach procurement and investment.

Read more...
AI and the smart factory
Schneider Electric South Africa IT in Manufacturing
Imagine walking into a factory where machines can think ahead, predict problems before they happen and automatically make adjustments to realise peak performance. This isn’t science fiction, it’s happening right now as AI continues to transform how we run industrial operations.

Read more...
Why your supply chain should be a competitive advantage
Schneider Electric South Africa IT in Manufacturing
The last five years have placed unprecedented strain on global supply chains. Leading companies are turning the challenge into an opportunity to transform their supply chains into a competitive advantage.

Read more...
Real-time modelling is the key to a resilient, bi-directional energy grid
Schneider Electric South Africa Electrical Power & Protection
Utilities and municipalities are facing a challenge as the country’s legacy power grid, engineered for one-way energy delivery from centralised suppliers to end-users, must rapidly evolve to meet a new paradigm.

Read more...
Shielding data centre growth from the looming power crunch
Schneider Electric South Africa Electrical Power & Protection
Today’s digital economy is placing unprecedented strain on the power grid. The good news is that these challenges are not insurmountable. By adopting proactive strategies such as alternative power sources, infrastructure planning and software, operators can secure capacity, build resilient facilities and scale sustainably.

Read more...
Circuit breaker innovations
Schneider Electric South Africa Electrical Power & Protection
Recent advancements in circuit breaker technology have seen a major step forward in setting new standards for efficiency and sustainability in data centres, industrial and commercial infrastructure.

Read more...
Why AI will never truly understand machines
Wearcheck IT in Manufacturing
Cutting-edge technology and solutions powered by AI are embraced by specialist condition monitoring company, WearCheck, where the extreme accuracy of data used to assess and diagnose machine health is paramount.

Read more...
Buildings and microgrids for a greener future
Schneider Electric South Africa IT in Manufacturing
Buildings are no longer passive consumers of power. Structures of almost every size are evolving into dynamic energy ecosystems capable of generating, storing and distributing their own electricity. Forming part of this exciting transformation are microgrids.

Read more...
Africa’s brightest young battery innovators
Schneider Electric South Africa News
Schneider Electric and Enactus, the international NGO dedicated to inspiring students through entrepreneurial action, have announced the winners of the 2025 Energy Transition Battery Innovation Challenge, funded by the Schneider Electric Foundation. It empowers young innovators to design battery solutions addressing the region’s most pressing energy challenges.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved