Temperature Measurement

Eye on the flame

September 2009 Temperature Measurement

The difference between good and bad combustion means a great deal for thermal power plant operators.

Durag looks at how monitoring technology can be used to achieve better burning.

The quality and efficiency of firing systems and the associated operational availability of boiler plants and steam generators is essentially dependent on the optimal mixture and dosing of fuel and combustion air in the entire combustion zone.

Disturbances of the local fuel/air ratio can result in localised combustion areas with high combustion temperatures and high formation of thermal NOx. Other problems include the creation of localised combustion areas with incomplete combustion, associated with the production of high levels of CO. High flue gas losses can also result, along with high amounts of unburned carbon or loss of ignition.


To achieve an optimal control of the combustion process, it must be possible to adjust two firing parameters individually. These are the uniform distribution of fuel according to the design data and, control of the combustion air distribution over the combustion zone.

Receiving good basic information from the actual situation inside the firing zone is essential in order to be able to achieve these targets. Therefore an online/realtime analysis of the actual firing situation is mandatory and has to deliver information regarding the local position of the main combustion zone, flame temperature distribution, local flame propagation, ignition point and the presence of any local fouling.


The furnace camera sensor of the Durag video and thermography system supplies online information directly from the combustion chamber to assist the operator in optimising the combustion process. The system provides a realtime video image as well as a realtime online thermographic analysis of the temperature distribution inside the combustion chamber.

The Durag system is an optical pyrometer based on advanced video data processing technology. A high quality picture with a wide angle of view and a small sensor diameter is obtained with a boroskope lens. The CCD camera is mounted in the cold part of the lance, thus allowing sensitive equipment to be mounted outside of the combustion chamber, allowing continuous use at high temperatures. An additional sapphire lens and air flushing are used to protect the boroskope tip from slag and ash particles.

In addition to the video image the system provides methods for the thermal analysis of the spatial temperature distribution inside the combustion chamber. Other capabilities include the ability to perform continuous temperature analysis with continuous display of the absolute temperature profile through the combustion chamber and the detection of the actual thermal position of the combustion zone.

For automatic closed loop control measures, all the data generated by the thermographic systems can be transferred to the main process control system at the customer site through a standardised data interface. Typically, one or two furnace cameras are enough to visualise and analyse the entire combustion chamber.

In the control room the setup requires the installation of one video monitor for every sensor or for every sensor group for online visualisation of the combustion process and one PC with a graphic monitor (maximum processing of two sensors possible) for thermography and temperature analysis.

Applications and results

The online data from the thermographic system supports the analysis of the combustion process: it provides the tools and ability to improve combustion quality by taking the necessary control measures. This can include the correction of undefined and incorrect positioning of the main combustion zone through adjustment of the fuel/air ratio for individual burners. The system can also be used to minimise the amount of unburned carbon in the ash and to minimise flue gas losses and increase the efficiency level by adjusting the excess air at constant combustion.

Using optimal furnace control reduces the maintenance requirements and furnace out-of-service conditions due to local overheating and undefined situations in the water and steam systems (avoiding water tube ruptures). It also has the benefit of minimising the boiler’s start-up time through a controlled temperature profile.

According to Durag using the thermographic temperature analysis data to aid operation of the boiler typically results in return on investment achieved in less than one year.

For more information contact Mike Andrews, OEN Enterprises, +27 (0)11 675 4447, mike@oenenterprises.co.za, www.oenenterprises.co.za


Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

New IR camera from RS components
April 2020, RS Components SA , Temperature Measurement
RS Components has announced the availability of a new thermal camera from FLIR, a specialist in intelligent sensing products for industrial markets. The TG275 thermal camera is ideal for automotive maintenance ...

Intrinsically safe temperature monitoring in Ex areas
May 2020, R&C Instrumentation , Temperature Measurement
All models of the versatile Raytek MI3 Compact series infrared transmitters are now also available as intrinsically safe versions for use in hazardous environments. Intrinsically safe devices prevent ...

Cable-type heat sensing systems
May 2020, Alien Systems & Technologies , Temperature Measurement
Sensing fire conditions using cable Broadly speaking there are two methods to sense fire conditions using cable. Most commonly used in the South African market is the digital type method: essentially ...

Profiling in paint cure ovens
April 2020, R&C Instrumentation , Temperature Measurement
Datapaq’s solution for monitoring temperatures in furnaces, ovens and dryers.

New fibre-optic pyrometer
April 2020, R&C Instrumentation , Temperature Measurement
As part of their Endurance range, Raytek and Ircon combined, have introduced the Endurance fibre-optic infrared thermometer. These pyrometers have an external sensor head attached via a fibre-optic ...

New temperature transmitters with Bluetooth
April 2020, Endress+Hauser South Africa , Temperature Measurement
High measuring performance and ease of use for all industries.

Inspection system for coronavirus detection
April 2020, Instrotech , Temperature Measurement
The coronavirus and other diseases are highly infectious and transferred by sick people or contaminated objects. Globally, aircraft are one way that this virus is quickly exported worldwide. China, the ...

Temperature measurement on ultra-thin glass
March 2020, Instrotech , Temperature Measurement
Touch displays, such as for smartphones and tablets, use ultra-thin glass that brings special challenges for temperature measurement technology during their manufacturing. For this application, Optris ...

Bimetal thermometer with switch contacts
December 2019, WIKA Instruments , Temperature Measurement
WIKA’s model TGS55 is a stainless steel bimetal thermometer which offers high reliability and long service life. Wherever the process temperature has to be indicated on-site and, at the same time, circuits ...

Infrared monitoring of kiln shells extends refractory life
December 2019 , Temperature Measurement
Extending the life of a kiln refractory as well as preventing disastrous failures requires a good understanding of the condition of the refractory material.