Motion Control & Drives


New XTS functionality enables novel solutions in machine building

November 2019 Motion Control & Drives

In 2012, Beckhoff set a new benchmark in intelligent parts transportation with the introduction of its eXtended Transport System (XTS), which has since been fitted to numerous generations of manufacturing machines. XTS does more than merely replace conventional conveyor belts; instead it enables completely new and innovative machine designs. Working with flexible motion profiles, it allows users to create processing sequences ranging from the very simple to the highly sophisticated and so optimise their entire manufacturing process.

XTS is a smart transport system of magnetically driven movers that travel along tracks consisting of motor modules and guide rails. A Beckhoff Industrial PC is able to control the movers independently according to individually defined motion profiles. The motor modules can be arranged in a variety of layouts to create both open and self-contained tracks. Up to now, movers have been confined to travelling on just one such track, but with the new XTS Track Management software functionality, track sections in one XTS can be exchanged among each other and ultimately combine multiple tracks within a single system. The new track management capabilities make it possible to transfer motor modules, complete with the movers on them, between multiple XTS systems with the aid of a suitable mechanical device, such as a spindle axis or linear motor. The motor modules and movers remain fully operational throughout this process, and the track sections transferred remain fully usable. The XTS Track Management capabilities will be incorporated into the TF5850 TwinCAT 3 XTS Extension.

Mover navigation on tracks and track parts

From a software perspective, this new functionality is similar to route navigation in road transport: drivers can set their individual route at any time. Each route defines the sequence of roads along which their vehicle must travel to get either from point A to point B or starting from point A and returning to it in a round trip. A track configured in the XTS software works in much the same way by linking individual XTS track parts in a specific sequence.

When an XTS system is configured, all motor modules are initially grouped into contiguous segments known as track parts. These may consist either of one single motor module or any number of consecutive motor modules. The track parts, in turn, form building blocks from which a large number of contiguous routes or tracks can be defined. A track may consist of one or more track parts; also, a track part may occur more than once in a given track, and may also be included in multiple tracks.

A PLC application program decides which track each mover should travel along. The movers are controlled using an extensive command set contained in the Motion Control Toolbox. Now though, a position set point defined in a given motion command no longer applies to the system as a whole but to a specific track. During program execution, a move command for an individual mover can be switched to a different track – at any time and on the fly. The only condition is that the track part on which the mover is located when the switch happens must also be part of the new track to which it is switching. Again, this is best illustrated with a road navigation analogy: A vehicle’s route may be altered at any time, but the road on which it is currently travelling is, of course, always part of the new route, too.

Enabling movers to travel on multiple tracks opens up a wealth of possibilities when it comes to designing transportation tasks for an XTS system. The additional flexibility afforded by the track management functionality creates valuable advantages, both for the machine builders designing systems and for the end users who later operate the machines.

Maximum flexibility without downtime

For several years now, in areas such as the food and cosmetics industry, there has been a sharp rise in the numbers of product variants within manufacturers’ product ranges. Inevitably, this has led to smaller lot sizes and significantly shorter production runs, and as a result is driving up demand for machines that allow flexible format changing. XTS already supports fast, software-driven format changes using product-specific parameter sets. Shapes and packaging sizes can be changed without the need for manual intervention. Now XTS also supports software-based tool changes: With the new track management capabilities, movers fitted with different tools can be fed in and out on a flexible basis, without leading to downtime. With this freedom to select a range of different tools, users can now set up tool magazines and, besides being able to switch to a completely different tool format, they can create custom tool combinations as well.

In addition, the setup described above makes it easy to accommodate maintenance intervals in the production process. For instance, a mover that has reached a predetermined limit for the number of products handled or, perhaps distance travelled, could be ejected and automatically replaced by another mover that has been refurbished. The ejected mover can then be serviced outside the actual production system. This means that machine processes no longer have to stop at set intervals to allow maintenance.

Parts storage but with a small footprint

Production processes often need to halt temporarily once a certain number of steps have been completed – to give products time to cure, dry or cool, for example. To avoid stoppages and maintain a continuous production flow, product buffers can be created to feed the next processing station downstream. This requires additional machine space; how much depends on the size of the product and on the length of the necessary wait in relation to the processing time.

With the new track management, track parts can now be stacked to create compact and efficient product holding capacity while maintaining a small overall machine footprint. Furthermore, in contrast to conventional buffer systems, there is no need to create extra parts handling capacity because the products are stored together with their movers and therefore remain clearly identifiable and easy to control.

Optimised utilisation of processing stations

Track management also offers advantages when products need to pass through specific processing stations multiple times. Consider, for example, a coating process in which several layers need to be applied to achieve a specific thickness and a molding cycle is required after the application of each layer. One way to achieve the desired output rate on machinery performing a task like this is to set up a sufficient number of processing stations in series. This approach, though, is costly and the individual processing stations often end up not working at full capacity.

Track management can improve efficiency by separating these processing stations from the main product flow on the primary XTS and putting them on a secondary, self-contained XTS. With this arrangement, products can pass through the processing stations multiple times in succession without having to switch direction. Once the required number of passes has been completed, the products are merged back into the product flow of the primary XTS.

Individual quality control, even at high output rates

One of the greatest challenges facing machine builders is how to incorporate individual quality control into the production process. Now, with the track management capability to flexibly feed products into and out of the process, these quality inspections can be performed without interrupting production flow, allowing high production output rates to be sustained, even with time-consuming, random inspections.

By contrast, in systems where quality control is built directly into the primary production process and multiple products are subsequently extracted in parallel, prior ejection of flawed products must not leave any gaps. To prevent a flawed product from causing all the products before it to run through the process chain again, track management can extract the flawed product and its mover from the product stream. After reworking a product at a manual work station, for example, the product can simply be returned to the product stream along with a mover, or, if the part is scrapped, an empty mover can be inserted back into the stream.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Robotic filling systems for the pharmaceutical industry
Motion Control & Drives
Pharma Integration, a leading pharmaceutical manufacturer, aims to replace traditional mechanical filling lines with compact, fully automated systems that are 100% robot-driven using machines known as Azzurra. Their integrated Faulhaber drives play a crucial role in the fill-finish process, ensuring the highest precision and safety across multiple production steps.

Read more...
New generation soft starter ranges
Motion Control & Drives
Schneider Electric has launched its new generation Altivar ATS430 and ATS490 soft starter ranges in Anglophone Africa, the latest innovations in motor control technology.

Read more...
Machinery maintenance and the hidden cost of fuel adulteration
Motion Control & Drives
Fuel adulteration is one of the most insidious threats to industrial machinery, safety and environmental compliance. Craig FitzGerald, chief executive officer of ISO-Reliability Partners, discusses how this widespread issue undermines mechanical performance and operational safety, and also poses significant legal and financial risks.

Read more...
Sensorless control of brushless
Motion Control & Drives
Many applications would benefit from a brushless motor without a sensor. A method developed by maxon is now setting new standards for precision and reliability.

Read more...
Precise information in the cockpit with FAULHABER stepper motors
Motion Control & Drives
For the display of Bugatti’s upcoming luxury model, Tourbillon, something truly special will be presented. Instead of a digital version, the driver will see a genuine Swiss timepiece behind the steering wheel.

Read more...
Complete mine hoist systems
Motion Control & Drives
From friction to single and double drum hoists, ABB is a complete supplier of various types of mine hoist systems.

Read more...
Innovative braking technology for heavy-duty hoists
Motion Control & Drives
The electro-hydraulic disc brakes in the DX series from RINGSPANN have been re-engineered, and are proving to be a trendsetter in the holding and emergency stop systems in the hoists of heavy-duty and container cranes.

Read more...
Largest private wind farm in South Africa
Motion Control & Drives
The Witberg wind farm will prevent the emission of more than 420 000 tons of CO2 per year in 122 000 households in the Western Cape.

Read more...
The environmental benefits of correct lubrication storage
Motion Control & Drives
While selecting the right lubricant for an application is key, how that lubricant is stored between applications is an often overlooked but critical aspect of reducing contaminants in machinery across a plant or site.

Read more...
Pluggable system solution helps tackle skills shortages and addresses DC power supply needs
Beckhoff Automation Enclosures, Cabling & Connectors
As a replacement for the conventional control cabinet, the MX-System from Beckhoff is a uniform modular automation system that can be used to completely replace traditional control cabinets with function modules in many applications.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved