Industrial Wireless


Wireless communication in Smart Grid deployments

April 2016 Industrial Wireless

The earlier attempts in the 1980s to introduce electronic control, monitoring and metering, and the technological innovations of the 1990s – digital control systems, graphical interfaces and software – were the seeds of the current Smart Grid. These developments made two-way communication implementation in the electrical grid possible.

The inclusion of different distributed power generation sources, mainly renewables and storage devices like electrical vehicles (EV) or batteries, created a change in the paradigm of the electrical grid. In the past, there were hundreds of centralised generation sources and one-way distribution networks, but with this shift, thousands of distributed generation sources and bi-directional networks were possible, increasing the complexity of the electricity distribution process.

Real-time communications, bi-directional transformers and sound network topology transformed consumers into prosumers, with the ability to act as a consumer at certain hours of the day and an electricity supplier during other hours. For example, consumers could now store energy at night within batteries and support energy consumption at peak demand times in the morning. This type of network communication already existed in the HV substations and in most of the MV substations; the challenge of the Smart Grid is to bring this communication to the distribution grid and from the LV transformers to house meters.

Advanced communications are essential for enabling modern grid applications, such as grid visualisation, real-time load monitoring, automated demand response, advanced protection, asset monitoring, smart metering and consumer load control. What are the combined communication requirements of the modern grid?

Bandwidth: Each single device needs a stable bandwidth to allow for services planning; the bandwidth needs to be the same for all the devices.

Latency: Time delay in the communication needs to be known and tied. Time critical applications in electric utilities are direct in fibre, so latency should not be a big challenge in Smart Grid applications.

Security: Any communication network needs to provide mechanisms to prevent and monitor unauthorised access, misuse, modification, or denial of access to both data and physical assets.

Reliability: Dependability, or reliability, describes the ability of a system or component to function under stated conditions for a specified period of time or at a specified moment or interval of time.

Advantages of cellular wireless communications over public networks

Using cellular over public networks combines the benefits of high penetration frequencies with the already available backbone from the telecom utilities connected to the Internet. High speed data access over cellular communications is a new choice for reaching local assets in remote utility facilities and third-party installations.

The cellular technology is used to transfer data in a secure and reliable way and provide connectivity over a public network to utility substations, energy generation locations, utility offices and secondary transformation centres.

This 4G technology is ideal for Smart Grids, as it allows for the two-way communication, remote monitoring and control of the grid, quick and easy installation and broadband speeds. With 4G, utilities can remotely locate, isolate and restore power outages, thereby increasing the stability of the grids. The multiple megabits supported by 4G significantly outpace the bandwidth supported by outdoor WiFi, digital cellular or proprietary solutions, giving grid operators an ability to not only address the primary meter communications requirements of the network, but also to leverage a common platform for real property management, mobile workforce connectivity (including VoIP support) and CCTV camera security backhaul.

There are a number of advantages for using wireless communications networks in Smart Grid deployments, including:

Access: Gain access to information, anytime, anywhere.

Mobility: Mobile workforce connected to company intranet or to systems with no cables.

Interoperability: Countrywide networks via different mobile operators allow redundancy and backup systems.

Reduced cost and complexity of network deployments: No fixed infrastructure deployment needed, uses existing infrastructure and the air.

Availability of technologies with different characteristics from which to choose: Short range WiFi or ZigBee, city range via cellular 3G or 4G-WiMax or radio, long range via radio-microwave or operator’s backbone.

With these advantages come a variety of questions to consider, including:

• Which technology do we choose for our specific application? What characteristics do we look for?

• What implications does this wireless technology have for the specific environment?

• Are there any deployment or interference issues?

• Are there scalability issues?

• Would using a public network compromise the security or redundancy of the network?

Choosing the right wireless solution

Network engineers need a complete solution for Smart Grid applications, from the cables, connectors, patch cords and patch panels, to a broad portfolio of wireline and wireless switches, routers and firewalls for harsh environments. What should engineers look for when choosing the right wireless solution?

• Compact Ethernet port LTE router for unlimited network connectivity.

• Integrated firewall for maximum perimeter protection of the network.

• Dual SIMS for network redundancy to ensure connectivity availability in case of network failure.

• GPS for geospatial localisation allows engineers to check the connection status of each device and ensure network security and availability.

A few solutions for effective cellular communications include:

• Compact 2 Ethernet port LTE router.

• Integrated firewall.

• Two SIMS for network redundancy.

• One serial port.

Conclusion

Data networks for Smart Grid applications need to operate reliably in harsh environments and withstand high electromagnetic interferences (EMI), large temperature variations, shocks, vibrations and dust. This requires special performance features and a high degree of resilience.

Smart Grid communications networks are becoming even more sophisticated, and data rates are increasing to support new grid applications, such as distribution automation devices, metering infrastructure, security and mobile devices. Wireless technologies are the ideal solution for ensuring the reliability of these communication networks. The monitoring, analysis and control capabilities that come with wireless solutions and a modernised grid ultimately improve the reliability, economics and overall sustainability of the production and distribution of electricity, and help Smart Grid engineers keep their networks up and running.

For more information contact Jacques Liebenberg, IAC, +27 (0)12 657 3600, [email protected], www.iacontrol.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Advanced noise monitoring solutions
Industrial Wireless
Noise pollution is a significant hazard in the mining industry, posing serious threats to worker health and safety. Probe IMT is implementing advanced noise monitoring solutions from Canadian monitoring specialist, M3SH Technology to foster healthier, safer and more productive work environments in the mining sector.

Read more...
Automated equipment monitoring
SKF South Africa Industrial Wireless
When it comes to product design, engineering and development, SKF has always opted for a multi-faceted approach. Ticking all these boxes is the new SKF Axios; a simple, scalable, cost-effective, and cloud-based end-to-end predictive maintenance solution for rotating equipment, from SKF and Amazon Web Services.

Read more...
Taming the terrain
Omniflex Remote Monitoring Specialists Industrial Wireless
Effectively monitoring and controlling water distribution networks is crucial if we are to avoid wasting this valuable, life-preserving resource. Wireless telemetry systems play a vital role in this task, collecting data from remote locations and transmitting it to a central control station for real-time monitoring and control.

Read more...
Wireless, smartphone-operated sound level meters
TANDM Technologies Industrial Wireless
Local test and measurement company, TANDM has introduced the Brüel & Kjaer wireless, smartphone-operated 2245 and 2255 sound level meters to the South African market.

Read more...
RF-Link automation module
Industrial Wireless
The DICIO is an RF-Link automation module enabling the remote control of a corresponding module.

Read more...
Assessing the order of events
Omniflex Remote Monitoring Specialists Industrial Wireless
Being able to monitor plant alarms and events in real time, in chronological order, is critical when a plant experiences an avalanche of alarms caused by an abnormal event. Sequence of events modules can be used to cut unplanned plant downtime and reduce operational costs.

Read more...
Protecting Australia’s harbours from a silent threat
Omniflex Remote Monitoring Specialists Industrial Wireless
Omniflex has completed the addition of remote monitoring to the existing cathodic protection (CP) systems at five berths in Port Kembla, Australia. This will enhance their surveillance and provide accurate energy monitoring.

Read more...
RFID made simple
Pepperl+Fuchs Industrial Wireless
Pepperl+Fuchs now offers a practical solution for users looking for an easy entry into the world of RFID with all its possibilities. The new F191 RFID read/write device combines the advantages of sophisticated industrial UHF technology with a standardised interface for IO-link communication.

Read more...
How lighting solutions support lean manufacturing processes
Turck Banner Southern Africa Editor's Choice Industrial Wireless
The philosophy of lean principles is a big trend in the pharmaceutical industry. It emphasises using time and resources as efficiently as possible in order to reduce waste and focus on value-added activities. Here are four examples of how lighting solutions can help increase efficiency by addressing common sources of wasted time and resources in pharmaceutical manufacturing.

Read more...
Programmable LED indicators
Turck Banner Southern Africa Industrial Wireless Data Acquisition & Telemetry
Turck Banner is expanding its portfolio of LED lights with the robust LED indicators of the K100 series. These units improve workflow and reduce downtime through clearly communicated status information.

Read more...