IT in Manufacturing


Communication networks for critical applications

July 2012 IT in Manufacturing

The rapid expansion of PCs and Ethernet networks to provide and control automation in industrial and utility environments has meant that the ideas and concepts behind IT have had to evolve to keep up. A corporate or home environment has much less stringent requirements for the IT infrastructure, so differences exist, particularly in the way the technology has evolved to cater for mission critical networks.

The biggest differentiating factor is the level of stability and uptime required from the network and attached devices. In a corporate environment, failure of the network is generally not a disaster, employees may be denied e-mail and Web access for a while, but unless the problem carries on for days this loss of functionality is more of an annoyance than a critical problem. The same cannot be said for an industrial or utility site – mission critical sites. In these cases, a failure of the communications network can lead to downtime, possibly of the entire site depending on the severity of the network failure. This will obviously lead to loss of production and income, and in some cases, even once the communications network is back online, restarting the plant can be a costly affair. For this type of network, any amount of downtime is a concern and must be avoided.

Mission critical applications and hardened equipment

One of the differences between a mission critical and non-mission critical site is the hardware that must be used. In a corporate environment, PCs and networking hardware do not have to be able to handle extreme environments, and failure of one device is generally note a concern as a replacement can easily be swapped-in without too much disruption. This is not the case on a mission critical site where failure of a single device can cause shutdowns, damage to property and assets, and possibly endanger the lives of personnel. And when it comes to swapping spare hardware, this can sometimes be a much larger undertaking depending on the effect on the rest of the network.

This has led to an evolution of the hardware for use in these hazardous environments, known as hardened equipment. For instance in a corporate network, PCs and networking hardware (switches and routers) contain fans for cooling. In a hazardous environment, fans can quickly become clogged and stop working, the subsequent overheating can in turn result in downtime. Hardened devices should not contain any moving parts such as fans; instead they use internal components designed to withstand higher (and lower) temperatures, as well as incorporating heat sinks for dissipation.

Another mark of hardened equipment is dual power supplies; if one fails the redundant supply can pick up the load without the device shutting down. Another evolution is resistance to the effects of EMI (electro magnetic interference). In an environment such as a substation, EMI can be high enough to cause data corruption and even loss of communications.

Hazardous area requirements

On mission critical sites, it is not only the communications hardware that requires hardening, end devices such as PCs must be able to operate in hazardous environments as well. In some cases, vendors have even taken to embedding hardened PCs within the Ethernet hardware. This means that a single device can now provide connectivity and also computing power within the application. It can thus be used for secure authentication, VPN server hosting or network monitoring. This can translate into easier remote access and control, whilst still upholding all the security requirements. A secure remote substation or site that relies on a central server for authentication can be extremely difficult to control and troubleshoot in the event of loss of an uplink to the central control room. Having a secondary backup PC within each substation can be a great help to engineers and technicians in this case, and can save by assisting with local authentication and troubleshooting.

Network architecture and protocol

It is not only the hardware that has to change. A mission critical network has very different requirements from a corporate one, and as such, requires different planning and configuration. For instance a corporate network generally focuses on high transfer rates rather than high availability. So the backbone switches will often aspire to be 10 Gigabit, and often edge devices will connect at gigabit speeds. These will often be flat networks with little or no sub-netting for traffic isolation, as it is not generally required. In a mission critical network the opposite is usually true. These networks do not require large amounts of data to cross the network at once, but rather are concerned with the reliability and latency of each individual data packet sent. There are also generally more requirements for separation of data using techniques such as IP sub-netting, layer 1 VLANs and layer 2 multicast controls.

Another important factor is path redundancy. Having hardened hardware is the first step, but is of little help if a single cable break can bring down the entire network. In these cases redundancy protocols such as RSTP (Rapid Spanning Tree Protocol) can be considered. These allow for redundant network paths that will be kept inactive until such time as they are needed. RSTP, a common open standard redundancy protocol, provides recovery times (worst case) of less than 30 seconds. In a mission critical network this can still be too much of a delay and so many hardware vendors implement their own proprietary protocols to provide quicker recovery. The solution is to look for a redundancy protocol providing faster recovery times, whilst still being backwards compatible with open standard protocols. This can allow a user to implement the faster recovery on critical network segments, whilst being able to use other hardware (with slower recovery) for less critical segments.

There are many protocols and networking functionalities available that are important for critical networks including some the following:

* Traffic prioritisation: queuing so that critical traffic is given higher priority across the network. This may be used in a basic format for voice data but is generally not implemented as well as it could be.

* Network monitoring: using SNMP [Simple Network Management Protocol] to assess the status of the network and attend to problems before they cause unnecessary downtime. This may be implemented in a small way on corporate networks, generally more for diagnostics than troubleshooting.

* Faster recovery times: ensuring that redundancy will allow recovery from any mission critical failure in a timely fashion.

* VLANS: layer 1 Virtual Local Area Networks allow users to segment data based on the physical port from which it was received.

* Load balancing: MSTP (Multiple Spanning Tree Protocol) allows users to combine redundancy (RSTP) with load balancing. By making use of the MSTP different VLANs can be assigned to different MSTIs (Multiple Spanning Tree Instances). Different MSTIs will use different redundant links for their RSTP region, meaning that at any one time, all cables in the MST region will be sending traffic, but no loops will be created within any VLAN.

* Network traffic control: using protocols such as IGMP (Internet Group Management Protocol) the multicast and broadcast traffic on the network can be controlled, meaning less erroneous data travelling to each end device.

* Static addressing: most corporate networks will run DHCP (Dynamic Host Configuration Protocol) to assign IP addresses to end devices, and will communicate between end devices using host names. In a mission critical environment it is better to use statically assigned IP addressing, as this is much easier to troubleshoot and control.

A communications network for a mission critical application cannot afford only a basic setup. In depth planning is required to guarantee that the network will provide the stability and redundancy to handle the critical nature of the traffic as well as the harsh environment. The technology and hardware have evolved for this specialised field, so the knowledge and understanding of the administrators and technicians in charge of the network must evolve to match.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Poor heat management in data centre design
IT in Manufacturing
Designing a world-class data centre goes beyond simply keeping servers on during load shedding; it is about ensuring they run efficiently, reliably, and within the precise environmental conditions they were built and designed for.

Read more...
It’s time to fight AI with AI in the battle for cyber resilience
IT in Manufacturing
Cybercrime is evolving rapidly, and the nature of cyber threats has shifted dramatically. Attacks are now increasingly powered by AI, accelerating their speed, scale and sophistication. Cybersecurity needs to become part of business-critical strategy, powered by AI to match attackers’ speed with smarter, faster and more adaptive defences.

Read more...
Why AI sustainability must be a boardroom priority
IT in Manufacturing
As South African companies race to harness artificial intelligence for innovation and growth, few are asking the most critical question - the environmental cost.

Read more...
RS South Africa shines spotlight on MRO procurement
RS South Africa IT in Manufacturing
RS South Africa has highlighted the growing pressures faced by procurement professionals responsible for maintenance, repair and operations supplies across the country’s vital economic sectors.

Read more...
Sustainable energy management
Siemens South Africa IT in Manufacturing
Utilising its innovative ONE approach technology, Siemens provides complete transparency on resource consumption and offers data-driven optimisation recommendations for sustainable energy management.

Read more...
Paving the way for a carbon-neutral future in South Africa
IT in Manufacturing
At ABB Electrification, we believe the infrastructure of the future must do more than support daily operations, it must anticipate them. We are committed to building intelligent systems that connect and optimise infrastructure across sectors.

Read more...
Africa’s hidden AI advantage
IT in Manufacturing
Through my work implementing AI systems across three continents, I’ve become convinced that Africa’s unique context demands urgent AI adoption. Successful implementation requires local expertise to understand resource constraints as design parameters to create the innovations that make technology truly work under real-world conditions.

Read more...
Siemens Xcelerator empowers space-tech pioneer, Skyroot Aerospace
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software has announced that Skyroot Aerospace, a leading private space launch service company in India, has adopted Polarion software from the Siemens Xcelerator portfolio to digitally transform its software development processes and enhance efficiency as it aims to accelerate access to space for its customers worldwide.

Read more...
Water is running out, is your ESG strategy ready?
IT in Manufacturing
Water is one of the most critical yet undervalued resources in modern business. Water stewardship asks businesses to understand their water footprint across the entire value chain and to engage with others who share the same water resources.

Read more...
Cybersecurity in 2025: Six trends to watch
Rockwell Automation IT in Manufacturing
Rockwell Automation’s 10th State of Smart Manufacturing report finds that cybersecurity risks are a major, ever-present obstacle, and are now the third-largest impediment to growth in the next 12 months.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved