Motion Control & Drives


Prototyping autonomous robots with FPGAs

February 2011 Motion Control & Drives

Robots are becoming more and more integral parts of life – from current applications like cleaning floors and performing surgeries to futuristic applications like autonomously operating cars. However, in order for robots to gain more autonomy to perform these higher-level tasks, they require sensors to provide information about their environment (audio, video and proximity to obstacles). As more and more sensors are required for robotic development, it becomes imperative that engineers use prototyping tools and platforms that allow them to design and iterate quickly. By developing functional robotic prototypes with field programmable gate arrays (FPGAs) and commercial off the shelf (COTS) hardware, engineers can test ideas, algorithms and I/O combinations efficiently to make next-generation robots a reality.

Why is COTS hardware important?

The amount of sensory data required for a truly autonomous robotic system is increasing. Robotic developers face the challenging prospect of changing feature sets and unknown requirements in terms of I/O. For example, a robot may contain a single low-resolution sensor for capturing video data. However, throughout the life­cycle of the project, the price of the sensor may become cheaper making it feasible to add additional cameras to the system. Robotic developers need to create on platforms that allow them to swap out I/O to make the best possible designs quickly. To mitigate risk, developers can choose COTS hardware that saves them engineering time while maintaining the flexibility to swap out different I/O configuration to meet the requirements. This is especially important during time sensitive endeavours like creating a first functional prototype.

Tips for developing the prototype

Creating a prototype is a commonly overlooked step during development – often it is viewed as a cost and time impediment to creating the final product. However, by selecting a platform that allows engineers to produce and change designs rapidly, prototyping becomes an invaluable phase during development. Prototypes are useful for proving the value of a particular design and, in emerging fields like robotics, can be essential to reaching the next stage of investor funding while better understanding customer needs.

One of the first tips to creating robotic system prototypes is to develop and validate FPGA IP piece by piece. Robotic applications can often times be separated into ‘sense’, ‘think’ and ‘act’ components, which means a portion of the code is responsible for reading sensory input, an algorithmic portion decides what action to take, and lastly, the output of the actuators to drive the robot autonomously. By modularising these three tasks, developers are able to decouple the I/O from the algorithms. This benefits the engineer by allowing them to test and validate code as independent units and make modifications to subsystems without impacting the stability of the entire prototype. The parallel nature of an FPGA design makes it an ideal candidate for this type of architecture as a variety of I/O components can be brought into and out of the device independently, while the reconfigurable fabric allows continuous modifications to algorithm level decisions. Once sections of IP have been proven to work independently, the sense, think and act code segments can be integrated together to form a fully functional embedded system for robotics that can be tested and validated as a whole.

FPGAs can help engineers create advanced, high-level perception and planning algorithms

A caveat that engineers often fall into when developing a prototype is worrying about the cost of a system too early in the design process. For the hardware components of a robot, one of the great time sinks and potential failure points are early cost optimisations. While cost is a factor, the goal of developing a prototype is to remain within striking distance of creating a profitable design. An FPGA may have more cost than an ASIC in some scenarios, but it has the flexibility to consolidate multiple components into a single package. For example, its reconfigurable nature allows developers to configure different types of peripheral resources on the FPGA such as serial communication interfaces. If at the on-set of a project there is uncertainty about the required number of interfaces, an FPGA allows configurability that eliminates the cost of additional chips and potential redesign work. As a result, engineers can focus on proving the value of their design rather than the individual component costs.

Robotic success with prototypes

The ability to demonstrate the behaviour of a system in front of customers, investors and potential employees is one of the greatest benefits to creating a functional prototype of a robotic system. In order to make sure that the development team reaches the prototype stages, it is important to select tools that allow them to reach the end-goal efficiently. By incorporating system architecture that is flexible in terms of I/O and programming capabilities, engineers can make necessary changes to the system based on client or investor feedback. FPGAs provide a rugged, stable and reconfigurable platform for integrating I/O and programming autonomy into robotics. Combined with the versatility of COTS hardware, the next generation of robotics has the ability to produce amazing results and become a more prevalent part of our everyday lives.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Plastics improve machine performance and reliability
igus Motion Control & Drives
Engineered plastics from German polymer manufacturer, igus continue to revolutionise mechanical systems across various industries worldwide, with a pledge to ‘improve what moves’ by replacing moving steel components with polymer equivalents.

Read more...
Integrated solutions power the future of mining
ABB South Africa Motion Control & Drives
ABB has a diverse array of solutions that cater to multiple industry sectors, and especially mining. Mining companies across South Africa are embracing automation and control technologies.

Read more...
Keeping the ball rolling
Bearing Man Group t/a BMG Motion Control & Drives
BMG’s Fluid Technology team has recently completed the design, supply and commissioning of an advanced lubrication system for a main bearing on a ball mill, which has been developed to optimise productivity and minimise maintenance requirements and downtime.

Read more...
Get your bearings right
Bearing Man Group t/a BMG Motion Control & Drives
BMG’s Bearings Division offers a comprehensive range of bearings, which comprise ball, roller, and linear bearings ranging in size from miniature to extremely large units.

Read more...
SEW-EURODRIVE prioritises ecology and economy
SEW-EURODRIVE Motion Control & Drives
Committed to environmental sustainability principles, SEW-EURODRIVE has developed the ECO2 design to offer drives with uncoated aluminium, with no compromise in their performance and durability.

Read more...
A year of innovation and milestones for ISO-Reliability Partners
Motion Control & Drives
For ISO-Reliability Partners 2024 was a transformative year marked by innovation, collaboration and a steadfast commitment to advancing industrial reliability. Guided by CEO, Craig FitzGerald, the company has introduced cutting-edge technologies, expanded its product portfolio and strengthened its reputation as a leader in lubrication, filtration and tribology.

Read more...
The impact of gearless mill drive technology on CO2 emissions
ABB South Africa Motion Control & Drives
ABB has released an in-depth white paper detailing the vital role that gearless grinding technologies can play in driving productivity in mining while simultaneously reducing their carbon footprint.

Read more...
Global geared motors market
Motion Control & Drives
The global geared motors market experienced significant growth from 2021 to 2023, driven by market recovery following the pandemic in 2020, and high backlog levels in 2022.

Read more...
Innovative new products from maxon
DNH Tradeserve t/a DNH Technologies Motion Control & Drives
A series of innovative new products has been launched by maxon. These include a drive with a diameter of just 16 millimetres, a controller that can be easily integrated into even the tightest of spaces, and a robust and reliable robotic actuator.

Read more...
Effective dust control
Motion Control & Drives
BLT WORLD, in conjunction with the global ScrapeTec team, plays an important role throughout Africa by assisting companies, during conveyor handling, to manage dust emission and material spillage effectively.

Read more...