PLCs, DCSs & Controllers


Locomotive breath

January 2010 PLCs, DCSs & Controllers

Fuel cells are electrochemical power devices that directly convert the chemical energy of a fuel into electric power. The cells produce electricity and water from hydrogen fuel and oxygen, which is the reverse process of water electrolysis. While fuel cells share principles of operation with batteries, they differ in that the electro-chemically active materials, hydrogen and oxygen, are stored or available externally and continuously supplied to the device rather than stored in the electrodes. They are periodically refuelled, like an engine, rather than recharged electrically. Like batteries, individual cells are grouped together into ‘stacks’ to provide the required voltage or power.

A fuel-cell hybrid power train uses a fuel-cell prime mover plus an auxiliary power/energy-storage device to carry the vehicle over power peaks in its duty cycle and recover kinetic or potential energy during braking. For steady-state operation, the continuous net power of the prime mover must equal or exceed the mean power of the duty cycle. Preliminary research has shown that a hybrid-switch locomotive can reduce capital and recurring operation costs.

The challenge

To control the operation of a 250 kW fuel-cell hybrid locomotive.

The solution

Using an NI CompactRIO controller to monitor and control the safety and operation of a fuel-cell locomotive and controller area network (CAN) bus to communicate the engine status to the operator via a touch panel programmed with NI LabVIEW software.

The prime mover of a traditional switch locomotive is a diesel engine between 1 and 2 MW driving an alternator that supplies power to the traction motors and locomotive auxiliary systems. These traditional switch locomotives require a high-power diesel engine, which typically is not fuel-efficient and has limited emission control. Subsequent design iterations of switch locomotives have transitioned to a hybrid-electric design, which reduces the overall emissions and fuel consumption because the engine can be downsized while the battery stores energy for high-power transients.

However, a large source of diesel particulate pollution in urban areas still comes from diesel-powered locomotives in rail yards. To help alleviate this pollution, a North American public-private partnership is prototyping a fuel-cell hybrid switch locomotive for urban rail applications and replacing the diesel engine with a 250 kW net fuel-cell power plant, creating the world’s largest fuel-cell hybrid locomotive.

Vehicle Projects LLC of Denver, Colorado, engineered the control system for the fuel cell using a CompactRIO embedded controller and LabVIEW graphical design software.

Designing a control system using CompactRIO

We faced several design and integration challenges while developing the large hydrogen fuel-cell vehicle including weight, packaging, and safety considerations. Harsh operating conditions, especially the shock loads that occurred during coupling to railcars, required highly rugged component systems. Additionally, the fuel-cell control system needed to communicate with the existing commercial vehicle controller to interpret operator demand and adjust fuel-cell power plant parameters to meet the power requirement. The CompactRIO embedded controller provided an ideal form factor to meet these specifications with the right I/O combination for this application. This programmable automation controller (PAC) managed and executed all power plant functions and continuously monitored the performance and safety of the hydrogen storage and fuel-cell power systems.

Software architecture based on LabVIEW

A CompactRIO embedded controller running the LabVIEW Real-Time and LabVIEW FPGA modules controls the fuel-cell power plant operation. The user monitors the control system via a touch panel installed in the locomotive cab. The control application consists of modular control algorithm VIs that communicate with each other and the field-programmable gate array (FPGA) I/O system using a tag-based architecture so that we can refer to each I/O point by the assigned name within the LabVIEW application. Each tag has properties associated with it including alarm limits, scaling (converting from voltage to engineering units), and events such as when the user wants it to log to a disk. We implemented a programmable logic controller (PLC) mentality into our PAC-based system.

Developing the perfect control platform with LabVIEW and CompactRIO

We chose LabVIEW and CompactRIO because the NI C Series modules with integrated signal conditioning helped us implement fast monitoring of the various I/O points while connecting to a wide range of specialty sensors such as flow meters and pressure sensors.

Additionally, we performed complex control algorithms beyond simple proportional integral derivative control at very fast loop rates. Some of our control algorithms included mathematical models that we implemented with LabVIEW, which we could not have developed using less flexible environments such as a PLC platform. Furthermore, we achieved the fast loop rates that we required because we had the ability to place some of the control algorithms on the FPGA.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Valmet’s automation powers world’s largest air-to-water heat pump
Valmet South Africa PLCs, DCSs & Controllers
Valmet will supply an automation system for Helen’s Patola air-to-water heat pump plant and two electric boilers currently being built in Helsinki, Finland. When completed, the air-to-water heat pump plant will be the largest in the world with a full heating production capacity around 30 MW.

Read more...
All eyes on the modern DCS platform
Schneider Electric South Africa PLCs, DCSs & Controllers
Modernised DCS platforms are no longer confined to hardware-dependent architectures. These systems have evolved to combine the strengths of both PLCs and DCS while adding capabilities that make them more open, resilient and collaborative.

Read more...
Automation solution for waste management at incineration facility
PLCs, DCSs & Controllers
Valmet is to deliver an automation system to Seongnam City’s incineration facility currently under construction in South Korea. By leveraging intelligent automation, the plant will optimise energy production, minimise emissions and deliver efficient, consistent performance throughout its entire lifecycle.

Read more...
Valmet’s supplies DCS to Europe’s largest electric boiler plant
Valmet South Africa PLCs, DCSs & Controllers
Valmet will supply an automation system to Helen’s Hanasaari electric boiler plant and a thermal accumulator being built in Helsinki, Finland. Once completed, it will be Europe’s largest electric boiler plant.

Read more...
Technology blueprint paves way for e-methanol fuel expansion
Schneider Electric South Africa PLCs, DCSs & Controllers
Schneider Electric has delivered the technology stack behind European Energy’s Kassø Power-to-Xfacility, the world’s first commercially viable e-methanol plant.

Read more...
PCS Global delivers turnkey MCC installation in Botswana
PCS Global Editor's Choice PLCs, DCSs & Controllers
PCS Global is delivering a turnkey containerised MCC installation for a major copper mining operation in Northwest Botswana.

Read more...
New energy-efficient evaporation line for dissolving pulp production
Valmet South Africa PLCs, DCSs & Controllers
Valmet will deliver a new evaporation line to Altri Biotek mill in Portugal. This delivery is part of Altri’s €75 million project to convert the Biotek mill to produce dissolving pulp for the textile industry.

Read more...
Valmet modernises turbine automation
Valmet South Africa PLCs, DCSs & Controllers
Valmet has received an order to deliver a comprehensive replacement of plant DCS and turbine control systems at Ennatuurlijk’s combined cycle power plant in the Netherlands.

Read more...
Hybrid DCS for an evolving industrial landscape
Schneider Electric South Africa PLCs, DCSs & Controllers
Today’s industrial automation continues to evolve at a blistering speed, which means traditional DCSs have to keep up to ensure continuous integration into modern, digital infrastructure.

Read more...
IIoT controller for the field and control cabinet
ifm - South Africa PLCs, DCSs & Controllers
The IIoT controller from ifm is a powerful, communicative and flexible PLC solution in machine and plant digitalisation.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved