PLCs, DCSs & Controllers


Advanced compressor control

May 2002 PLCs, DCSs & Controllers

Exceptional demands are placed on control systems applied to centrifugal compressors. Not only must these systems regulate the delivery of process gas or air at specified pressures or flow rates, but also they must effectively prevent surge and its attendant problems. The surge phenomenon adversely affects the quality of control, machine life and plant operating costs.

Surge

Surge is a phenomenon associated with axial and centrifugal compressors. It occurs when, for any given speed, guide vane angle or inlet valve position, flow in the system decreases sufficiently to cause momentary flow reversal in the compressor. Flow reversal occurs at an instant when the pressure developed by the compressor no longer exceeds the pressure in the downstream system. This is an unstable condition, which triggers self-oscillation between flow and pressure, resulting in erratic compressor capacity. Surge appears as rapid pulsations in the flow and discharge pressure, which invariably causes damage to the compressor, associated piping and upsets to the process.

Broadly stated, improperly protected compressor plant can incur increased running costs, expensive equipment repairs, more frequent compressor overhauls, expensive plant downtimes and represent a danger to plant personnel.

Anti-surge and capacity controls are the main elements of compressor control. Anti-surge prevents surge by maintaining a safe minimum flow through the compressor. This is accomplished by manipulating a blow-off or recycle valve. The capacity control is generally based on a pressure (suction or discharge) or flow by manipulating a suction or discharge valve, guide vanes or rotational speed.

During steady-state operation, the capacity control of the compressor (discharge pressure, suction pressure or flow control) can conflict with the anti-surge control, since each attempts to vary the flow through the compressor in contrary directions. Therefore, the control system must also decouple the capacity control with the anti-surge control to avoid possible instability.

Moore Process Controls had developed a well-proven compressor control algorithm utilising tested features to protect a compressor against surges while simultaneously optimising the efficiency of the compressor.

This algorithm had been successfully implemented on multistage blowers with multiple side-streams as well as single stage booster compressors, air compressors, multistage high compression ratio compressors (Pr > 30), multistage propylene and ethylene refrigerant cooling compressors with side-streams.

Features of the compressor control algorithm include:

* Anti-surge control.

* Static control line.

* Dynamic control line.

* Safety line.

* Adaptive gain.

* Surge detector and counter.

* Capacity control.

* Decoupling of anti-surge and capacity control.

* Automatic start-up and shutdown sequences.

* Load-sharing (if required).

Anti-surge

A sound anti-surge system will prevent surge with a surge control line. In order to maximise compressor efficiency, the control margin between the surge and the surge control lines must be minimised. To accommodate the minimised control margin, the surge and the surge control lines must be calculated dynamically from the operating point of the compressor. The safety line and adaptive gain further enhance this control algorithm. An optional surge detector serves as a backup for the anti-surge control system.

Capacity control

To meet process requirements, the capacity of the compressor must be controlled. This is accomplished by manipulating a discharge valve, suction valve, inlet guide vanes or rotational speed. The choice of which process variable to be controlled and the manipulated variable are often dictated by the process dynamics.

Decoupling of anti-surge and capacity control

Both the above systems control the mass balance around the compressor. Therefore, strong interaction between these two functions can be expected. Of the two control systems, anti-surge must take precedence over capacity control, because of the possible damages caused by surge. Repairs on possible damages and downtimes caused by surge can be expensive.

To minimise the effect of the interaction between the two systems, the two systems must be effectively decoupled. Decoupling will reduce the response of one system with respect to the other system, which will minimise the unwanted side effects caused by the interaction.

Automatic start-up and shutdown

Experience had shown that most of the surges happen during start-up or shutdown. One of the most common factors is the inconsistency of the operator. The possibility of surges during an automated start-up or shutdown is dramatically reduced, because the compressor is controlled the same way during every start-up or shutdown.

Parallel operation

Where compressors are operated in parallel to a common discharge header, interaction between the compressors will happen. The process must be optimised to minimise the interaction, particularly when the flow is reduced towards the surge threshold.

Series operation

Compressors are often operated in series because of the required pressure ratio. The compressors can be driven by the same shaft or separately. Each one of the compressors should be seen as separate and be controlled accordingly. The compressors and the anti-surge control will interact, which could lead to instability. Again, this calls for system optimisation to minimise the interaction, particularly when the flow is reduced towards the surge line.

Controller for the application

Moore Process Controls recommends that this algorithm be implemented on the PAC 353 (process automation controller), as well as on APACS (advanced process automation and control system).

The Moore PAC 353 controller is a standalone, microprocessor-based industrial controller designed for a broad range of process applications. It can serve as a single-loop controller or as a multiloop controller. It also offers advanced control capability through a set of extensive function blocks available in the controller. The PAC 353 networking options enable it to function as an integral element in a plant system if required.

Since 1999, more than 75 anti-surge units of this rugged controller have been implemented in the field to handle a variety of compressors in various locations throughout the country including, Afrox, Air Liquide, Angloplatinum, Air Products, Iscor, Natref, South African Breweries and Sasol Group of Companies.

A properly implemented compressor control system increases availability by preventing unnecessary process trips, minimising process disturbances, preventing surge and surge damage, automating start-up and shutdowns. It increases efficiency by minimising recycle or blow-off, operating at lowest possible energy levels and optimising the load-sharing of multiple units.

Ultimately this reduces maintenance, repairs and downtime costs and is a cost-effective method of preventing destructive and costly surges.

Eric Hore, Moore Process Controls

011 466 1673

[email protected]

www.moore.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Valmet’s automation powers world’s largest air-to-water heat pump
Valmet South Africa PLCs, DCSs & Controllers
Valmet will supply an automation system for Helen’s Patola air-to-water heat pump plant and two electric boilers currently being built in Helsinki, Finland. When completed, the air-to-water heat pump plant will be the largest in the world with a full heating production capacity around 30 MW.

Read more...
All eyes on the modern DCS platform
Schneider Electric South Africa PLCs, DCSs & Controllers
Modernised DCS platforms are no longer confined to hardware-dependent architectures. These systems have evolved to combine the strengths of both PLCs and DCS while adding capabilities that make them more open, resilient and collaborative.

Read more...
Automation solution for waste management at incineration facility
PLCs, DCSs & Controllers
Valmet is to deliver an automation system to Seongnam City’s incineration facility currently under construction in South Korea. By leveraging intelligent automation, the plant will optimise energy production, minimise emissions and deliver efficient, consistent performance throughout its entire lifecycle.

Read more...
Valmet’s supplies DCS to Europe’s largest electric boiler plant
Valmet South Africa PLCs, DCSs & Controllers
Valmet will supply an automation system to Helen’s Hanasaari electric boiler plant and a thermal accumulator being built in Helsinki, Finland. Once completed, it will be Europe’s largest electric boiler plant.

Read more...
Technology blueprint paves way for e-methanol fuel expansion
Schneider Electric South Africa PLCs, DCSs & Controllers
Schneider Electric has delivered the technology stack behind European Energy’s Kassø Power-to-Xfacility, the world’s first commercially viable e-methanol plant.

Read more...
PCS Global delivers turnkey MCC installation in Botswana
PCS Global Editor's Choice PLCs, DCSs & Controllers
PCS Global is delivering a turnkey containerised MCC installation for a major copper mining operation in Northwest Botswana.

Read more...
New energy-efficient evaporation line for dissolving pulp production
Valmet South Africa PLCs, DCSs & Controllers
Valmet will deliver a new evaporation line to Altri Biotek mill in Portugal. This delivery is part of Altri’s €75 million project to convert the Biotek mill to produce dissolving pulp for the textile industry.

Read more...
Valmet modernises turbine automation
Valmet South Africa PLCs, DCSs & Controllers
Valmet has received an order to deliver a comprehensive replacement of plant DCS and turbine control systems at Ennatuurlijk’s combined cycle power plant in the Netherlands.

Read more...
Hybrid DCS for an evolving industrial landscape
Schneider Electric South Africa PLCs, DCSs & Controllers
Today’s industrial automation continues to evolve at a blistering speed, which means traditional DCSs have to keep up to ensure continuous integration into modern, digital infrastructure.

Read more...
IIoT controller for the field and control cabinet
ifm - South Africa PLCs, DCSs & Controllers
The IIoT controller from ifm is a powerful, communicative and flexible PLC solution in machine and plant digitalisation.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved