Motion Control & Drives


F1 gearbox rig simulates the on-track shocks in the test room

April 2001 Motion Control & Drives

In Formula 1, the difference between winning and losing is often measured in hundredths or thousandths of a second. However, even a team that has such an edge cannot enjoy success if its cars are not running when the chequered flag falls. Reliability also wins races, a fact recognised by the enormous sums that F1 teams spend to prove components under race conditions in the test laboratory. Jaguar Racing is at the forefront in this respect. The team has recently invested in a large (160 kW) inverter-based gearbox test rig which has been designed, constructed, programmed and installed by drives systems specialist Control Techniques.

Built at Control Techniques' Luton Drive Centre, the gearbox test rig, and its associated motors, (also supplied by Control Techniques) are now part of a suite of advanced testing facilities at Jaguar Racing's prestigious new F1 headquarters in Milton Keynes. The function of the rig is to simulate the on-track conditions gearboxes routinely encounter during F1 races. These can include load on one wheel only, (ie because the other has lifted), or simulating the over-run condition when the wheels drive the engine (which entails reversing the torque direction).

The test rig consists of three 160 kW motors, each driven by size 5 Unidrives, and a 5,5 kW motor controlled by a size 2 Unidrive. The first of the l60 kW motors runs in speed control mode and mimics the input from the engine. Driving through a step up gearbox at 4300 rpm, it gives a maximum speed into the Jaguar Racing gearbox of 18 000 rpm. The two remaining 160 kW motors are torque controlled. They are coupled to the output shafts of the Jaguar Racing gearbox and simulate the output loads. The final smaller 5,5 kW motor is referenced from the input drive and drives the gearbox oil pumps.

The control for the drive system is provided via Control Techniques' high-speed fieldbus system, CTNet, in conjunction with the company's SYPT, Windows based, graphical programming software. This combination provides the master speed reference to the input drive, ensures independent torque control or load sharing for the output drives and furnishes the test engineers with a graphical display to aid dynamic diagnostics. The SYPT software also produces torque and speed displays for the console in the test rig control room.

The rig - a crucial tool in race preparation

The test rig is in regular use, due in no small part to the requirement to have three gearboxes (two spares) available for any race. The gearboxes themselves fall into two categories: brand new units and used units that have been refurbished or rebuilt. Each newly built gearbox is subjected to a test of at least 45 minutes in both forward and reverse torque directions. For used gearboxes the total test time is usually less, typically 1 h. The tests on both units start with a warm up period under no load conditions. This enables the test engineers to monitor the oil flow rates and check the lubrication pressure and temperature before moving into second phase where loading is increased progressively right up the rev scale to a maximum (usually) of 16 000 rpm. During this run-up the comprehensive facilities provided by the test rig enable the test engineers to tune sensors in the gearbox, and to calibrate clutch and gear positions using paddles on an F1 steering wheel in the rig control room.

According to Rob Dorney, Transmission Designer at Jaguar Racing, "We have used the rig extensively to run in gearboxes prior to race events and for research and development purposes. It has proved invaluable for function testing the gearboxes, calibration and fault finding. There have been several instances where the rig has flagged up transmission problems before the gearbox is fitted to the car, preventing car breakdowns and therefore saving valuable track time."

Regenerative drive system minimises energy use

The length of the tests with a conventionally configured 160 kW drive system would normally mean quite a hefty electricity bill for Jaguar Racing. However the actual energy used in the testing procedure is insignificant due to the regenerative design of Control Techniques' drive system. When the test rig is in normal running condition, the power being used from the mains supply is negligible as a result of the power on the DC bus recirculating. This is achieved by the output drives putting power back into the common DC bus used by the input drive. The regenerative system capacity is considerably higher than what is needed for 'normal' running - the only time that almost full capacity is approached is when the system is stopping in an emergency.

"The installation of this rig is a further indication of how Control Techniques is able to take a problem, break it down and provide a system solution to solve it, commented Eddie Kirk, Control Techniques' UK Sales and Marketing Director. "The gearbox test rig is one of the first fruits of the technology partnership that Control Techniques has with Jaguar Racing. It is a terrific example of how the latest in technology in one industry sector can be transferred to provide benefits in another."

[email protected]



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Robotic filling systems for the pharmaceutical industry
Motion Control & Drives
Pharma Integration, a leading pharmaceutical manufacturer, aims to replace traditional mechanical filling lines with compact, fully automated systems that are 100% robot-driven using machines known as Azzurra. Their integrated Faulhaber drives play a crucial role in the fill-finish process, ensuring the highest precision and safety across multiple production steps.

Read more...
New generation soft starter ranges
Motion Control & Drives
Schneider Electric has launched its new generation Altivar ATS430 and ATS490 soft starter ranges in Anglophone Africa, the latest innovations in motor control technology.

Read more...
Machinery maintenance and the hidden cost of fuel adulteration
Motion Control & Drives
Fuel adulteration is one of the most insidious threats to industrial machinery, safety and environmental compliance. Craig FitzGerald, chief executive officer of ISO-Reliability Partners, discusses how this widespread issue undermines mechanical performance and operational safety, and also poses significant legal and financial risks.

Read more...
Sensorless control of brushless
Motion Control & Drives
Many applications would benefit from a brushless motor without a sensor. A method developed by maxon is now setting new standards for precision and reliability.

Read more...
Precise information in the cockpit with FAULHABER stepper motors
Motion Control & Drives
For the display of Bugatti’s upcoming luxury model, Tourbillon, something truly special will be presented. Instead of a digital version, the driver will see a genuine Swiss timepiece behind the steering wheel.

Read more...
Complete mine hoist systems
Motion Control & Drives
From friction to single and double drum hoists, ABB is a complete supplier of various types of mine hoist systems.

Read more...
Innovative braking technology for heavy-duty hoists
Motion Control & Drives
The electro-hydraulic disc brakes in the DX series from RINGSPANN have been re-engineered, and are proving to be a trendsetter in the holding and emergency stop systems in the hoists of heavy-duty and container cranes.

Read more...
Largest private wind farm in South Africa
Motion Control & Drives
The Witberg wind farm will prevent the emission of more than 420 000 tons of CO2 per year in 122 000 households in the Western Cape.

Read more...
The environmental benefits of correct lubrication storage
Motion Control & Drives
While selecting the right lubricant for an application is key, how that lubricant is stored between applications is an often overlooked but critical aspect of reducing contaminants in machinery across a plant or site.

Read more...
Sustainability is transforming fluid power
Editor's Choice Motion Control & Drives
Sustainability is reshaping the future of fluid power. With the growing demand for cleaner, more efficient technologies and tightening global regulations, fluid power systems are being re-engineered for higher efficiency, lower emissions and reduced material usage.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved