IT in Manufacturing


The emperor is not completely naked

December 2014 IT in Manufacturing

There may be some confusion in manufacturing regarding what big data actually is and the difference between Big Data and analytics – and the vendors are not always helping. However, I see that manufacturing can benefit from ‘Big Data’ tools (such as Hadoop and others) to pull together structured, unstructured and time-stamped data. Manufacturing is also not only plants or factories in isolation, but the complete value-stream, which includes the supply chain for larger organisations.

In this article, I will look at and describe some of the benefits proposed to the manufacturing industry by Big Data vendors and proponents.

Better forecasts

Having actual (not theoretical) takt-time information and throughput figures per product per line, with planned maintenance schedules, accurate breakdown reasons and historic data of the time to repair, will enable planners to forecast ‘available to promise’ dates far more accurately. To do this, information is required from the MOM system, the ERP system, the maintenance system, the plant historians, the quality system, and even from the warehouse system. This will also require the analysis of user-entered text/comments normally associated with maintenance systems, often difficult to trap and structure for analysis with normal analytical tools. Planners or customer service representatives will then be able to inform the customer in advance if these dates change as a result of a breakdown, ie, not only on the day when delivery was scheduled to happen. I believe better plant capability forecasting will be possible when using Big Data tools. In the bigger supply-chain, Big Data will also improve demand forecasting on the plant. Combining the capability and demand forecasting information will improve planning and scheduling operations.

More understandable multiple metrics

I believe Big Data is about analytics. What Big Data tools do better than their normal EMI counterparts is to identify patterns over time. For instance, if metric 1 increases by 10% then metric 2 typically reduces by 2,5%. Unless you build your EMI solution to specifically look for this, you will not see the pattern. Big Data tools can also be used to identify relationships between ‘silo’ metrics, for instance the relationships between stock-turns, throughput, yield, final quality, maintenance disciplines, product, customer, breakdowns, shifts, personnel and time of year or seasonality. EMI tools are good at providing real-time operational intelligence of defined relationships. Big Data tools are good at finding relationships between data sets.

Faster service and support for customers

In my first point I referred to this. Having proven and validated capability information will make it much easier to provide accurate ‘available to promise’ delivery dates and times. Having proven cause/effect information available at all levels will improve the ability of customer service agents to inform their customers (in advance) when things go wrong at plant level.

Real-time manufacturing analytics

EMI provides these, but once again only looks at defined data sets, while Big Data tools enable ‘machine learning’ within the factory. For instance, if a factory complex has 200 pumps of five different sizes, Big Data will be able to analyse the state of the pumps over time and develop patterns for ‘healthy’ and ‘imminent breakdown’ states. If a breakdown happens, it will be able to identify the state prior to breakdown and will be able to associate this state to all the other pumps of the same size in the factory. This will enable the system to warn of imminent equipment failure well in advance of the actual event. If this warning is then combined with accurate capability information, the customer service agent will be able to predict planned maintenance and delayed deliveries for a certain period. This is a maintenance example, but as per the multiple metrics example above, it is about finding patterns and relationships.

Correlation of manufacturing and business performance

Think about this, we all know that an improved OEE should translate into better business (financial) performance. We know that this is generally accepted in industry, otherwise people would not use that metric. But what is the actual financial impact of a one percent drop in OEE for a specific company? In the silo way we structure, store and analyse manufacturing data, coupled with the volatility of the market and stock cycle times, normal BI and EMI tools will find it more difficult to provide an accurate answer to that question than Big Data tools.

In saying all of the above, I am not proposing that every manufacturer should run and get a Big Data solution – far from it. What I propose is that as the manufacturing fraternity, we investigate what Big Data does for companies and evaluate how we can apply the concepts in manufacturing, with or without actual Big Data tools.

For more information contact Gerhard Greeff, Bytes Universal Systems, +27 (0)82 654 0290, [email protected], www.bytes.co.za/solutions/manufacturing-operations





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Schneider Electric’s Five-Pillar Strategy takes the guesswork out of equip
Schneider Electric South Africa IT in Manufacturing
Schneider Electric’s Field Service Cycle, otherwise known as the Five-Pillar Strategy, is a structured approach to managing the lifecycle of equipment to prolong asset lifespan while reducing the total cost of ownership for customers.

Read more...
Enhancing operational safety and efficiency through advanced risk-based modelling
IT in Manufacturing
Now, more than ever, capital and operational cost can be reduced while enhancing operational safety and increasing production uptime by applying transformative methods such as Computational Fluid Dynamics modelling.

Read more...
Laying the groundwork in IT/OT
IT in Manufacturing
In the realm of manufacturing, the core mandate is to deliver value to stakeholders. For many in the industry, this is best achieved through a risk-averse approach. Only upon establishing a robust foundation should a business consider venturing into advanced optimisation or cutting-edge technological innovations such as industrial AI.

Read more...
Looking into the future of machine vision
Omron Electronics IT in Manufacturing
Artificial intelligence (AI) is driving a significant transformation in all areas of industrial automation, and machine vision is no exception. Omron’s AI-powered machine vision systems seamlessly integrate state-of-the-art algorithms, enabling machines to analyse and interpret visual data meticulously.

Read more...
Driving digital transformation in the truck industry
Siemens South Africa IT in Manufacturing
Tatra Trucks, a leading truck manufacturer in Czechia, has adopted the Siemens Xcelerator portfolio of industry software including Teamcenter software for product lifecycle management and the Mendix low code platform to help increase production volume and strengthen its ability to manufacture vehicles that meet specific customer requirements.

Read more...
Opinion piece: Digital twins in manufacturing – design, optimise and expand
Schneider Electric South Africa IT in Manufacturing
Digital twin technology can help create better products, fast. It can also transform the work of product development. This strong statement from McKinsey reinforces how far digital twins have come in manufacturing.

Read more...
Asset tracking is key to driving operational excellence and sustainable growth
Schneider Electric South Africa IT in Manufacturing
Asset tracking plays a critical role in the success of industrial businesses. By effectively managing and monitoring assets, companies can optimise their operations, ensuring that resources are used efficiently. This leads to improved productivity and reduced costs.

Read more...
Siemens democratises AI-driven PCB design for small and medium electronics teams
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software is making its AI-enhanced electronic systems design technology more accessible to small and mid-sized businesses with PADS Pro Essentials software and Xpedition Standard software.

Read more...
Predicting and preventing cyber-attacks with AI and generative AI
IT in Manufacturing
The speed at which cyber threats are evolving is unprecedented. As a result, companies need to implement state-of-the-art technology to protect their data and systems.

Read more...
Real-world lessons in digital transformation
IT in Manufacturing
Synthesis has helped businesses across multiple industries with their digital transformation by solving their unique integration challenges.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved