Industrial Wireless


Concurrent dual-radio transmission for zero packet loss

August 2014 Industrial Wireless

The unpredictability of radio interference has long been a deterring factor for industrial operators wanting to deploy wireless connectivity for mission-critical applications. Many self-healing and dual-band technologies have been developed to mitigate the impact of interference. However, signal recovery and renegotiation can still result in packet loss and is unacceptable for latency intolerant applications. This paper will discuss how zero packet loss communication can be achieved, using concurrent dual-radio transmission, to provide highly reliable wireless connectivity for safety critical applications, with benefits such as optimised data throughput, interference immunity and latency free transmissions.

Overview

Conventional wireless networks typically provide a best effort level of service and are susceptible to environmental interference, which can cause excessive packet loss and result in repeated resend requests, rendering them unacceptable for many latency sensitive applications. Self-healing wireless technologies have been introduced to provide communication recovery through channel/band switchovers. However, recovery can take many seconds, if not minutes, to complete. Even when routine measures are taken to identify and eliminate environmental interference, wireless interference still remains a possibility and can compromise network reliability and system safety.

Traditional dual-band access points can be misleading in regards to the way they actually operate. Many users expect the access points to transmit data on both bands simultaneously, only to discover that the access points transmit via one band and switches to the other band if transmission quality drops below a certain threshold. This type of redundancy has its limitations:

* Switching over to the other band takes time and packet loss will occur during this transition period.

* If the threshold for band switchover is set too low, data rate will need to drop below the threshold before the current link is disconnected. This is unacceptable for applications that require a continuous and high level of performance.

* If the threshold is set to trigger the band switch over at a higher rate, a ‘ping-pong’ effect – where the wireless connection constantly switches back and forth between the two bands – becomes a potential problem, making the switching mechanism very inefficient.

Facts about wireless interference

Interference can be difficult to detect and quantify: When interference distorts a packet sent by the transmitter, an acknowledgement packet will not be sent by the receiving end and the packet will have to be resent. Also, the 802.11 protocol is designed to delay transmission if existing interference is detected and will transmit packets only after the interference has cleared. Prolonged interference can severely reduce the throughput of the wireless network.

Non-WiFi devices can also cause interference: Cordless telephones, wireless cameras, Bluetooth/ZigBee devices and microwave ovens are just a few examples of products which can severely impact the quality of wireless networks. Even a poorly wired electrical circuit can cause interference. In addition to a reduction in data throughput, interference can trigger data rate renegotiation, or back-off, lowering data transmission rates unnecessarily.

Increasing the density of access points will not reduce interference: A higher density of access points will actually generate more interference on the network. Reducing the transmission power of each access point will reduce co-channel interference, but effectively negates the initial effort of increasing the access point density.

There are possibly new and hidden sources of interference: The obvious benefits of wireless connectivity has spurred device manufacturers to offer new wireless products, such as surveillance cameras, media players, motion sensors and other personal electronic devices. Even defective electrical circuits within the walls can cause interference.

Concurrent dual-radio technology

Many advanced wireless technologies are available to detect interference, provide source location and automatically switch bands/channels to restore wireless communications. However, interference immunity/prevention is invariably preferable to interference mitigation and is the only way to ensure uninterrupted communication for safety critical applications.

Concurrent dual-radio transmission virtually eliminates the possibility of wireless interference. The concept of concurrent dual-radio technology is simple: for every outbound packet, send a duplicate packet simultaneously via the secondary frequency to ensure that at least one of the packets reaches the receiver. Latency sensitive applications can be deployed across a concurrent dual-radio wireless network because the chance that an unintentional source of interference can simultaneously disrupt both bands (2,4 and 5 GHz) is highly unlikely (see figures).

Safety-critical and real-time wireless applications

Wireless video monitoring systems for safety-critical applications can require megabit speeds. Interference can result in frame skips, screen freeze and dropouts. For other wireless safety-critical applications with zero latency tolerance, such as control systems at cable car stations and automated guided vehicles (AGV) in factory automation, concurrent dual-radio transmission with interference immunity is what operators need to ensure real-time performance with zero data loss communication.

Certified for SafetyNET p by Safety Network International e.V., Moxa’s wireless access points provide proven redundant wireless link technology for real-time Ethernet connectivity. The AWK-5222 and AWK-6222 series industrial wireless AP/bridge/client devices feature two independent RF modules. This means that both modules can be transmitting simultaneously, duplicating data transmissions and eliminating the possibility of packet loss during band switch over. Requests to resend packets are significantly reduced because transmitting simultaneously over two distinct bands ensures a high probability that at least one of the identical packets will reach the client/receiver.

Simultaneous dual-radio transmissions also increase the throughput by reducing the number of resend requests. Throughput is the average rate with which actual usable data is delivered over a path. It is possible to have high data rate yet unsatisfactory throughput if a large portion of the bandwidth is consumed by packet retransmission.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Remote water monitoring
Omniflex Remote Monitoring Specialists Industrial Wireless
Remote monitoring specialist, Omniflex has helped New South Wales Ports improve its ability to track water usage by installing remote monitoring to 38 water meters at its Port Kembla site, sending the data to the NSWPorts web portal.

Read more...
Control and information overlay for nuclear plants
Omniflex Remote Monitoring Specialists Industrial Wireless
Radiation monitoring specialist Omniflex has supported a major UK nuclear plant operator through a critical phase of its decommissioning programme, ensuring continuous safety and security monitoring as buildings were progressively de-manned.

Read more...
How to protect your industrial network
RJ Connect Editor's Choice Fieldbus & Industrial Networking
Network security is no longer a matter of preventing hacking or data breaches. Traditional defence mechanisms for perimeter protection may not fully address internal threats or device-level vulnerabilities alone.

Read more...
Revealing unseen leaks
Industrial Wireless
As water tariffs rise and infrastructure continues to age, utilities across the Nordic region are under growing pressure to do more with less. Mano Koolen, channel sales manager at leak detection specialist, Ovarro outlines how municipalities are responding to hidden water loss using acoustic monitoring.

Read more...
Upgrading an outdated alarm monitoring system
Omniflex Remote Monitoring Specialists Industrial Wireless
Legacy alarm replacement specialist, Omniflex has successfully upgraded Guernsey Electricity’s MPAS90 alarm annunciator systems, which were first installed decades ago and are obsolete.

Read more...
Upgrading obsolete rack-based alarms
Omniflex Remote Monitoring Specialists Industrial Wireless
Legacy alarm replacement specialist, Omniflex has supported a major oil and gas company in Qatar by upgrading the obsolete MPAS 90 alarm systems at one of its major plants in the country.

Read more...
Würth Elektronik presents new radio modules
Industrial Wireless
Würth Elektronik has introduced two new highly compact radio modules. They give developers maximum freedom in designing proprietary wireless solutions that go beyond standard protocols.

Read more...
How IEC 61162 standards are building smarter fleets
RJ Connect IT in Manufacturing
The maritime industry is moving through one of the most important transformations in its history. Ships that once operated as collections of independent systems are now evolving into integrated digital ecosystems, where navigation, monitoring and control systems must exchange a constant flow of data. At the heart of this transformation lies the IEC 61162 family of standards.

Read more...
Senseca introduces data loggers to meet long range transmission needs
Senseca Industrial Wireless
Senseca has introduced the driven LR35 data logger series based on LoRaWAN technology. They are specifically designed for situations where long-range transmission is required.

Read more...
Time-sensitive networking
RJ Connect Editor's Choice Fieldbus & Industrial Networking
In this article, we will explore what is driving the rise of time-sensitive networking, how it is reshaping industrial efficiency, the challenges when deploying this technology, and ways to tackle these challenges.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved