IS & Ex

How to calculate an intrinsically safe loop approval

September 2017 IS & Ex

We all know what can happen if the correct techniques are not used when interfacing into the hazardous area. Using intrinsic safety (Ex i based on IEC/SANS 60079-11; IEC/SANS 60079-25), the energy in the hazardous area is limited to below the ignition energy of the gas present, thereby preventing explosions.

For an explosion, all three of gas/dust, oxygen and source of ignition (spark or heat) need to be present. Intrinsic safety works on the principle of removing the source of ignition. This can be achieved by using a Zener barrier or galvanic isolator.

Zener barrier

A Zener barrier is a simple device where the voltage is limited by a Zener diode and the current by a resistor. A fuse is present to protect the Zener diode as shown in Figure 1. The key to safety is the intrinsically safe earth. Without it, there is no protection. If the input voltage increases above Zener diode voltage, the Zener conducts and the fuse blows, after which the Zener barrier needs to be replaced. In addition, the barrier has a volt drop across it under normal operating conditions, so careful calculation must be done to ensure that there is sufficient voltage at the field device. [Note: using Zener barriers without an IS earth is not safe.]

Figure 1.
Figure 1.

Galvanic isolator

A galvanic isolator is an active device that energy limits without the dependence on the IS earth for safety as shown in Figure 2. It also has the advantage of supplying higher voltage at the hazardous area terminals and allowing longer cable lengths. Isolators have local LED indication and most 4-20 mA isolators transfer Hart communications through the optical isolation.

Figure 2.
Figure 2.

Figure 3 defines Ex i for the various classifications of hazardous zones.

Figure 3.
Figure 3.

Figure 4 shows that the barrier/isolator has [Ex ia] IIC; the square brackets indicate that the device (mounted in a safe area) can have connections to the hazardous area, in this case Ex ia i.e. zone 0 – IIC is the gas group. This transmitter has Ex ia IIC T4, which means it can be located in zone 0 in gas group IIC – T4 is the maximum surface temperature of the device (135°C).

Figure 4.
Figure 4.

The barrier/isolator has maximum output parameters for voltage, current and power (Uo, Io and Po). These are maximum output values under fault conditions (known as safety description or entity parameters). The field device has maximum input parameters (Ui, Ii and Pi), which are the maximum values that can be applied under fault conditions and still be safe. [Note: for a safe loop all three input parameters must be greater than or equal to the corresponding output parameters.

To complete the system loop approval, the electrical energy stored in the cabling needs to be considered. Table A.2 in IEC/SANS 60079-11 lists the maximum cable capacitance against output voltage. In the example shown the maximum electrical stored energy that can be connected to the hazardous area terminals equates to Co = 83 nF and Lo = 4,2 mH. The transmitter has internal capacitance and inductance, so maximum cable capacitance Cc = Co-Ci and maximum inductance Lc = Lo-Li. The cable specification typically gives pF/m and μH/m allowing a calculation of maximum cable length

Based on this assessment, a system certificate or loop approval can be documented. [Note: inserting a barrier or isolator with a non-certified field device is not safe.] Some field devices (see Figure 5) like thermocouples are defined as Simple Apparatus.

Figure 5.
Figure 5.

A simple loop drawing is still required and an assessment of power/maximum surface temperature needs to be completed.


Flameproof (Ex d) offers hazardous area protection for zone 1 and 2 and offers protection for higher voltage (110 VAC, 220 VAC) applications and requires mechanical planning and preparation. For 24 V systems, intrinsic safety offers a simple and flexible solution for zones 0, 1 and 2. Intrinsic safety is the only protection that considers faults of the field wiring and offers live working without the need for a gas clearance certificate. It does require some design and planning to ensure that the system loop analysis is acceptable.

Note: Ex nL has been replaced by Ex ic for zone 2 in the standards. This means intrinsic safety can easily be used in zones 0, 1 and 2 and the wiring can be in the same multi-core cable or trunk. Another advantage of Ex ic is that the safety factor of 1,5 (as shown in Table A.2 of SANS/IEC 60079-11) does not need to be applied to cable parameters allowing for longer cable runs.

For further reading on using IS isolators in Functional Safety (SIL) Process Control loops, please see

Part 2 of this article can be found at

For more information contact Gary Friend, Extech Safety Systems, +27 (0)11 791 6000,,


Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The importance of up-to-date alarm annunciators
January 2020, Omniflex Remote Monitoring Specialists , IS & Ex
At 1.23 pm on Sunday, 24 July 1994, twenty-six people were injured when an explosion erupted through an oil refinery in an otherwise quiet corner of South Wales in the United Kingdom. The site was occupied ...

Gas detector for multiple applications
January 2020, Comtest , IS & Ex
Comtest, the local representative of Industrial Scientific, global leader in gas detection, has announced a new version of the Ventis Slide-on Pump. The new pump is compatible with both Ventis MX4 and ...

Light grid with integrated muting unit
November 2019, ifm - South Africa , IS & Ex
The new generation of light grids from ifm electronic allow for the muting mode without an external junction box or a muting relay being required, as they are already integrated into the receiving element. ...

Light grid with integrated muting
October 2019, ifm - South Africa , IS & Ex
The new generation of light grids from ifm electronic incorporates muting mode without an external junction box or a muting relay being required, as they are already integrated into the receiving element. ...

How integrated visual management and remote monitoring demystify machine safety
September 2019, Turck Banner , IS & Ex
This article shares common challenges for machine safety, and shows how combining easy-to-use safety devices with visual indication and remote monitoring capabilities can help make safety simpler and more effective.

Security concerns for safety systems
September 2019, Phoenix Contact , IS & Ex
A common strategy required for the future.

Taking safety to the next level
September 2019, SICK Automation Southern Africa , IS & Ex
SICK Automation is a world leading manufacturer of sensors, safety systems and automatic identification products. The next step for safety – this core idea therefore underpins the entire design of the ...

Alarm system upgrade from Omniflex
September 2019, Omniflex Remote Monitoring Specialists , IS & Ex
Fiddler’s Ferry Power Station was constructed by the CEGB (Central Electricity Generating Board) in the UK and came into full operation in 1973. It has four 500 MW sets, giving a total generating capacity ...

Intrinsic safety barcode scanning from Extech Safety Systems
September 2019, Extech Safety Systems , IS & Ex
Extech Safety Systems has worked with UK-based Mobexx to develop the MobXscan mobile application for barcode scanning with mobile devices. The app has been released for Windows 10 and Android, offering ...

Smart devices for Ex areas
September 2019, Pepperl+Fuchs , IS & Ex
The Pepperl+Fuchs brand ecom has launched its next generation ATEX Zone 1/21 and Div. 1 certified, intrinsically safe 4G/LTE-Android smartphone – Smart-Ex. The Smart-Ex 02 is a complete new development ...