IS & Ex

How to calculate an intrinsically safe loop approval

September 2017 IS & Ex

We all know what can happen if the correct techniques are not used when interfacing into the hazardous area. Using intrinsic safety (Ex i based on IEC/SANS 60079-11; IEC/SANS 60079-25), the energy in the hazardous area is limited to below the ignition energy of the gas present, thereby preventing explosions.

For an explosion, all three of gas/dust, oxygen and source of ignition (spark or heat) need to be present. Intrinsic safety works on the principle of removing the source of ignition. This can be achieved by using a Zener barrier or galvanic isolator.

Zener barrier

A Zener barrier is a simple device where the voltage is limited by a Zener diode and the current by a resistor. A fuse is present to protect the Zener diode as shown in Figure 1. The key to safety is the intrinsically safe earth. Without it, there is no protection. If the input voltage increases above Zener diode voltage, the Zener conducts and the fuse blows, after which the Zener barrier needs to be replaced. In addition, the barrier has a volt drop across it under normal operating conditions, so careful calculation must be done to ensure that there is sufficient voltage at the field device. [Note: using Zener barriers without an IS earth is not safe.]

Figure 1.
Figure 1.

Galvanic isolator

A galvanic isolator is an active device that energy limits without the dependence on the IS earth for safety as shown in Figure 2. It also has the advantage of supplying higher voltage at the hazardous area terminals and allowing longer cable lengths. Isolators have local LED indication and most 4-20 mA isolators transfer Hart communications through the optical isolation.

Figure 2.
Figure 2.

Figure 3 defines Ex i for the various classifications of hazardous zones.

Figure 3.
Figure 3.

Figure 4 shows that the barrier/isolator has [Ex ia] IIC; the square brackets indicate that the device (mounted in a safe area) can have connections to the hazardous area, in this case Ex ia i.e. zone 0 – IIC is the gas group. This transmitter has Ex ia IIC T4, which means it can be located in zone 0 in gas group IIC – T4 is the maximum surface temperature of the device (135°C).

Figure 4.
Figure 4.

The barrier/isolator has maximum output parameters for voltage, current and power (Uo, Io and Po). These are maximum output values under fault conditions (known as safety description or entity parameters). The field device has maximum input parameters (Ui, Ii and Pi), which are the maximum values that can be applied under fault conditions and still be safe. [Note: for a safe loop all three input parameters must be greater than or equal to the corresponding output parameters.

To complete the system loop approval, the electrical energy stored in the cabling needs to be considered. Table A.2 in IEC/SANS 60079-11 lists the maximum cable capacitance against output voltage. In the example shown the maximum electrical stored energy that can be connected to the hazardous area terminals equates to Co = 83 nF and Lo = 4,2 mH. The transmitter has internal capacitance and inductance, so maximum cable capacitance Cc = Co-Ci and maximum inductance Lc = Lo-Li. The cable specification typically gives pF/m and μH/m allowing a calculation of maximum cable length

Based on this assessment, a system certificate or loop approval can be documented. [Note: inserting a barrier or isolator with a non-certified field device is not safe.] Some field devices (see Figure 5) like thermocouples are defined as Simple Apparatus.

Figure 5.
Figure 5.

A simple loop drawing is still required and an assessment of power/maximum surface temperature needs to be completed.


Flameproof (Ex d) offers hazardous area protection for zone 1 and 2 and offers protection for higher voltage (110 VAC, 220 VAC) applications and requires mechanical planning and preparation. For 24 V systems, intrinsic safety offers a simple and flexible solution for zones 0, 1 and 2. Intrinsic safety is the only protection that considers faults of the field wiring and offers live working without the need for a gas clearance certificate. It does require some design and planning to ensure that the system loop analysis is acceptable.

Note: Ex nL has been replaced by Ex ic for zone 2 in the standards. This means intrinsic safety can easily be used in zones 0, 1 and 2 and the wiring can be in the same multi-core cable or trunk. Another advantage of Ex ic is that the safety factor of 1,5 (as shown in Table A.2 of SANS/IEC 60079-11) does not need to be applied to cable parameters allowing for longer cable runs.

For further reading on using IS isolators in Functional Safety (SIL) Process Control loops, please see

Part 2 of this article can be found at

For more information contact Gary Friend, Extech Safety Systems, +27 (0)11 791 6000,,


Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Tube connector for Ex areas
May 2020, Parker Hannifin - Sales Company South Africa , IS & Ex
Parker Hannifin has extended its Phastite permanent instrumentation connection range, which is now available in a number of corrosion-resistant alloys (CRAs), including Alloy 825, 625 and Super Duplex, ...

Safety controllers with diagnostics
October 2020, Turck Banner , IS & Ex
The combination of an intuitive user interface and diagnostics makes it easy to design and troubleshoot complex safety systems in just a few clicks.

Real-time location system
September 2020, Extech Safety Systems , IS & Ex
With worker safety becoming an ever-increasing focus for many businesses operating within process industries, iTAG X30 delivers a solution that allows high levels of location accuracy across their entire site.

Sensor technology now in use in explosion-protected areas
September 2020, Pepperl+Fuchs , IS & Ex
Increased customer demand for hazardous areas requirements that can be met using sensor technology require sensors to be fitted in potentially hazardous locations, posing ever greater challenges.

Safe operation of LNG tanks
September 2020, Endress+Hauser South Africa , IS & Ex
Endress+Hauser’s innovative instrumentation and advanced inventory management solutions for LNG storage tanks ensure safe operation of plant and high levels of inventory transparency.

PyroStorm protection for control equipment
September 2020, Alien Systems & Technologies , IS & Ex
If you work at a large industrial plant or mine, you may have noticed those hydraulic lubricating oil packs, or perhaps the diesel generator sets, oil store rooms, pump rooms or flammable liquids stores, ...

PyroStorm provides cost-effective fire protection for control equipment
August 2020 , IS & Ex
If you work at a large industrial plant or mine, you may have noticed those hydraulic lubricating oil packs, or perhaps the diesel generator sets, oil store rooms, pump rooms or flammable liquids stores, ...

Surge protection for electro-mobility
July 2020, Phoenix Contact , IS & Ex
The market for electric cars is growing exponentially and automobile manufacturers are increasingly focusing on electro-mobility. However, surge protection also has a part to play in this technology. ...

Essential monitoring solutions
June 2020, Extech Safety Systems , Maintenance, Test & Measurement, Calibration
Meteor Communications’ MCE-MRC-EX is powered by MeteorCloud, a one-stop end user application for complete data visualisation, outstation device control and reporting activities. The remote monitoring ...

Ethernet for Ex areas
July 2020, Turck Banner , IS & Ex
Turck is opening the world of the process industry to digitalisation and Industry 4.0 with its first Zone 2 Ethernet gateway for the excom I/O system. All process data can thus now reach IT systems for ...