Editor's Choice


Nick Denbow's European report: Japan reopens nuclear power plants while progress is slow elsewhere

November 2018 Editor's Choice

The Fukushima nuclear power plant accident occurred back in March 2011. Following that disaster, Japan ordered the close-down of all the nuclear generating plants in the country – there were 42 of them, previously providing a major part (over 30%) of the domestic electricity supply. Historically, Japan had used nuclear, coal and LNG power plants, and very little oil. The accident resulted in an enormous increase in imports of coal and LNG – the latter leading to an acceleration of LNG production in Australia and Africa, as well as the USA, over the last seven years.

For the future, Japan has had to review this decision, and slowly is allowing the restart of its nuclear power plants. This also helps in trying to meet the Japanese obligations under the Paris climate accord – to do this, nuclear energy needs to be used for around 20% of the nation’s power supply. Currently, nine more reactors in five power plants have been given the go-ahead to restart by their NRA, and eight more have received operating approval from local courts. All of these are required to operate under much stricter regulations, for example, relating to the evaluation of earthquake risks. Electric utilities have asked the Japanese NRA to certify a further 21 reactors, to come into service in the next 10 years. Each reactor restart will cut the demand for LNG by a million tons a year.

Part of the response planning over a possible accident is for Japan to stage major disaster scenarios, a sort of civil defence exercise. A nuclear disaster drill took place in August, mobilising 21 000 people in Fukui Prefecture: this assumed simultaneous major radiation release incidents at the Oi and Takahama nuclear power plants, both of which now have operational reactors. The drill involved residents and officials from the cabinet office, the Nuclear Regulation Authority and municipal governments. It focused on evacuating residents from Fukui and the surrounding prefectures. It also involved personnel aboard a maritime self-defence vessel, helicopters and land evacuations by buses. This exercise forms part of the conditions for the reopening of these nuclear generation plants.

Slow progress in Europe

In contrast to the activity in Japan, the construction of the new large size nuclear plants in Finland, France and the UK seem to make only slow progress. These could even be overtaken by the projects trying to bring forward the adoption of SMRs, particularly in Russia, US and maybe even in Britain. Actually, small-sized reactors have been working in Siberia for local supply systems since the 1970s, using the graphite moderated boiling water design. In China, several small reactors are in operation, with versions exported to India and Pakistan. Originally the term SMR was adopted by the International Atomic Energy Agency (IAEA), which defines ‘small’ as under 300 MW, and up to about 700 MW as ‘medium’ – which includes many of these current operational units. Together IAEA referred to them as ‘small and medium reactors’ (SMRs): but now the term is taken to mean ‘Small Modular Reactor’, and currently many of these are designed for around a 50 MW output. Multiple SMRs can be grouped on one facility.

In the USA, the NuScale Power design certification for their SMR project, to be adopted first by Utah Associated Municipal Power Systems, has been completed by the NRC. Utah AMPS is planning a 12-module SMR plant in Idaho, scheduled for operation by 2025, and forecasting an output cost of $65 per MWh, which is comparable with other renewable technology generation price forecasts. The market for SMRs is seen in brownfield sites – the sites of decommissioned (coal fired) power plants, where the power unit size averages 125 MW.

The UK has plans to add SMR plants, and the government even has (presumably) awarded the £44 million promised to support a ‘two-phase advanced modular reactor’ development, for which it received 20 bids earlier this year. NuScale has expressed strong interest, and Rolls-Royce is promoting its detailed design for a 220 MW SMR unit. Rolls-Royce has designed three generations of small to medium naval reactors since the 1950s.

In South Africa, two projects are known to have considered the use of modern HTR, high temperature gas cooled reactor designs, the PBMR (pebble bed modular reactor) project, led by Eskom (165 MW), and the HTMR (35 MW): the PBMR project is believed to be currently on hold. This type of reactor design is of major interest around the world, and October 2018 sees another of the biennial conferences on the topic in Warsaw, Poland.

Nick Denbow spent thirty years as a UK-based process instrumentation marketing manager, and then changed sides – becoming a freelance editor and starting Processingtalk.com. Avoiding retirement, he published the INSIDER automation newsletter for 5 years, and then acted as their European correspondent. He is now a freelance Automation and Control reporter and newsletter publisher, with a blog on www.nickdenbow.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Loop Signatures 1: Introduction to the Loop Problem Signatures series
May 2020, Michael Brown Control Engineering , Editor's Choice
Over the years I have had many requests to write a book giving more detailed explanations of some of the problems I have encountered in my work on practical loop optimisation. I am by nature and inclination ...

Read more...
Loop Signatures 2: The two classes of processes.
July 2020, Michael Brown Control Engineering , Editor's Choice
This article will discuss the two classes of processes called self-regulating and integrating (or ramping) processes. This subject is absolutely vital to regulatory control, but strangely is seldom taught ...

Read more...
From the editor's desk: The virtual business assistant
May 2020, Technews Publishing (SA Instrumentation & Control) , Editor's Choice
Have you ever wished someone would automate the daily grind of routine tasks and set you free to focus on the more engaging aspects of your job?

Read more...
From the editor's desk: The virtual business assistant
June 2020, Technews Publishing (SA Instrumentation & Control) , Editor's Choice
Enter robotic process automation (RPA), a disruptive workplace technology that uses software “robots” to mimic many of the repetitive interactions human beings have with their computers. It performs such ...

Read more...
Case History 172: Interesting controls in a copper extraction plant.
June 2020, Michael Brown Control Engineering , Editor's Choice
In my 30 years devoted to optimising controls in industrial process plants in many countries, I thought that I had seen all the possible process dynamics that one would encounter. Imagine my surprise ...

Read more...
The emergence of a new future in the energy sector
April 2020 , Editor's Choice
Adaptively complex and persistent challenges in Africa are driving the need for a new future in the energy sector. Lack of access to energy, (more than 600 million people in Africa with no access to energy) ...

Read more...
Case History 171: Instability in a metallurgical plant
March 2020, Michael Brown Control Engineering , Editor's Choice
I have written several articles about the unique problems I have encountered, specifically in the mining processing industry. This article is about some experiences in a mining operation where recently ...

Read more...
Case History 170
January 2020 , Editor's Choice
As mentioned in earlier articles, the integral (or I term) in the controller is a brilliant thing. It is an extremely elegant and simple solution for eliminating offset in control. However, like everything ...

Read more...
Case History 169: Tuning a very difficult temperature control loop
November 2019 , Editor's Choice
As I have mentioned in previous articles, Greg McMillan, one of the world’s top control experts, has said that he finds temperature control loops generally the worst optimised processes as most people ...

Read more...
Beyond Capex and Opex
November 2019 , Editor's Choice
How do we finance IT? We identify a need, we test the waters with a PoC (proof of concept), then we get the green light after we prove the value. We know roughly how much it will cost by looking at the ...

Read more...