classic | mobile
 

Search...

SA Instrumentation & Control Buyers' Guide

Technews Industry Guide - IIoT 2018

Technews Industry Guide - Maintenance, Reliability & Asset Optimisation

 

Safety solutions for intelligent human-robot collaborations
Technews Industry Guide: Industrial Internet of Things & Industry 4.0, IS & Ex


Human-robot collaboration (HRC) describes a work scenario in which humans and automated machines share the same workspace and work within it simultaneously. Driven by Industry 4.0, this model promises the interaction of highly flexible work processes, maximum plant availability and productivity, as well as economic efficiency. But HRC will only be able to live up to this promise when appropriate application-specific safety technology is assured.

Human-robot interaction: a question of space and time

Industrial automation focused on interaction between humans and machines long before the initiation of Industry 4.0. Until now, two interaction scenarios – coexistence and cooperation – have dominated, representing about 90 percent of such situations. Space and time are the important interaction parameters here.

Coexistence describes a work situation in which the human and the machine are in neighbouring areas at the same time during the interaction. Cooperation, on the other hand, is an interaction during which the human and the machine share the same work area but work within it at different times.

A third form of interaction is increasingly being focused on within the framework of Industry 4.0: collaboration between the human and the robot during which they share the same workspace at the same time. In such collaborative scenarios, the standard industrial robot with safe kinematics is no longer sufficiently safe, so collaborative robots must be used. In this case the forces, speeds and travel paths of the robot must be monitored, and limited, depending on the actual degree of risk. If necessary, the robot is stopped or switched off. The distance between the human and the robot thus becomes a decisive safety-relevant parameter.

Risk assessment is always the starting point – even with ‘coboters’

Since no two human-robot collaborations are the same, an individual risk assessment of the HRC is necessary even if the robot used has been specially developed for this collaboration with humans. Such a ‘coboter’ will already have several of the features of an inherently safe design right from the initial considerations. At the same time, however, the collaboration space must also meet fundamental requirements, e.g. regarding minimum distances to neighbouring accessible areas that present crushing or trapping risks. The standards basis for the functional safety of HRC applications consists of general standards, such as IEC 61508, IEC 62061 and ISO 13849-1/-2. In addition, ISO 10218-1/-2 on the safety of industrial robots and, especially, ISO/TS 15066 on robots for collaborative operation, must be taken into account.

Developers and integrators of robot systems must not only carefully examine the functionalities and compliance with standards of the design-related protective measures undertaken by the robot’s producer, but also take into account any residual hazards and risks. It is therefore necessary to carry out a risk assessment on the robot system according to ISO 12100 in order to derive appropriate safety measures for risk reduction, e.g. safety light curtains or safety laser scanners.

Safety-oriented operating modes of collaborating robot systems

According to the technical specification ISO/TS 15066, there are four different types of collaborative operation. The ‘safety-rated monitored stop’ halts the robot for interaction with the human; ‘hand guiding’ ensures safe HRC because the robot is deliberately guided manually at an appropriately reduced speed. In the third type of collaboration, ‘power and force limiting’, the necessary safety is achieved by reducing the power, force and speed of the robot, e.g. by using limiting functions for safety-relevant control systems, or an inherently safe design of the robot with a biomechanical load limit at which no hazard or injuries are to be expected. This takes place regardless of whether there is any intentional or unintentional physical contact between the robot and a human.

The fourth type of collaboration, ‘speed and separation monitoring’, is very much in the spirit of highly flexible work scenarios. It is based on monitoring of the speed and travel paths of the robot and adapted to the work speed of the operator in the protected collaboration space. Safety distances are permanently monitored and, when necessary, the robot is slowed down or stopped, or its travel path is changed. The robot system can automatically resume its movements, with the usual speeds and travel paths, when the distance between the operator and the machine increases again to greater than the permitted minimum distance. This restores the robot’s productivity without delay.

Functional safety for HRC: expertise, product range and implementation from a single source

Of the four different types of collaboration quoted in ISO/TS 15066, it is ‘speed and separation monitoring’ that offers the greatest future potential in HRC applications. Therefore, whilst not neglecting the still-dominant interaction scenarios of coexistence and cooperation, it is clear that safety-oriented sensor and control technology faces new challenges in enabling unhindered human-robot collaboration.

For more information contact Mark Madeley, SICK Automation Southern Africa, +27(0)11 472 3733, mark.madeley@sickautomation.co.za, www.sickautomation.co.za


Credit(s)
Supplied By: SICK Automation Southern Africa
Tel: +27 10 060 0550
Fax: +27 11 472 3078
Email: info@sickautomation.co.za
www: www.sickautomation.co.za
Share via email     Share via LinkedIn   Print this page

Further reading:

  • Zoned approach reduces the complexity of machine safety
    January 2019, ASCO, IS & Ex
    This article examines a unique approach known as zoned safety, which reduces complexity in the design of redundant pneumatic safety circuits. It explains the advantages of the concept over the traditional ...
  • Kia Slovakia reduces safety ­downtime
    January 2019, Rockwell Automation, IS & Ex
    Allen-Bradley GuardLogix maximises efficiency in body shop.
  • Setting new gas monitoring ­standards in coal mining
    January 2019, IS & Ex
    The presence of methane gas in coal mining processes is highly probable, and monitoring methane levels in operational mining sections has become obligatory. Legislation calls for the installation of methane ...
  • AST adds new value to fire suppression in 2019
    January 2019, Alien Systems & Technologies, IS & Ex
    Moving forward into 2019, Alien Systems & Technologies has put new value-added services in place for customers.       New value-added services Pyroshield IG55 gaseous automatic fire extinguishing systems ...
  • Protecting pumps in hazardous ­areas
    January 2019, Siemens Digital Factory & Process Indust. & Drives, IS & Ex
    Safety has top priority wherever flammable media are used in industry. This applies in particular to the chemical industry, where flammable liquids are produced, processed and transported by pumps in ...
  • PyroStorm provides cost-effective fire protection for control equipment
    December 2018, Alien Systems & Technologies, IS & Ex
    If you work at a large industrial plant or mine, you may have noticed those hydraulic lubricating oil packs, or perhaps the diesel generator sets, oil store rooms, pump rooms or flammable liquids stores, ...
  • Compact safety light curtains for tight spaces
    December 2018, Turck Banner, IS & Ex
    The new SLC4 is Banner’s most compact safety light curtain to date. It has a low-profile design and a sensing area that extends the entire length of its 160 mm housing. This Type 4 safety light curtain ...
  • Wise choices to decrease fire risk and improve safety
    November 2018, Spero Sensors & Instrumentation, IS & Ex
    Fire safety at the workplace is a topic that is easily neglected and many businesses do not devote enough attention to it. The topic quickly becomes top of mind when people lose their lives, or when a building or substantial part of an industrial plant is destroyed by fire.
  • Network-based process visualisation
    November 2018, Pepperl+Fuchs, IS & Ex
    IT technologies such as PC and server virtualisation are establishing themselves in larger plants in the process industry to reduce the growing number of PC hardware components, while at the same time increasing flexibility and availability.
  • PC-based control for the process industry
    November 2018, Beckhoff Automation, IS & Ex
    Beckhoff Automation adds Ex protection to extend its reach in hazardous areas.
  • Don’t forget to test your fire protection systems before the holiday shutdown
    November 2018, Alien Systems & Technologies, IS & Ex
    As the year draws to a close, it is natural that people start looking forward to the holidays. It is therefore quite easy to neglect to consider the damaging effect a fire could have on businesses during ...
  • Advanced light curtain improves safety
    November 2018, Rockwell Automation, IS & Ex
    The rise of robots has ushered in an increased demand for light curtains that provide a safe environment between the robotic work cells and the rest of the plant. The Allen-Bradley GuardShield 450L safety ...

 
 
         
Contact:
Technews Publishing (Pty) Ltd
1st Floor, Stabilitas House
265 Kent Ave, Randburg, 2194
South Africa
Publications by Technews
Dataweek Electronics & Communications Technology
Electronic Buyers Guide (EBG)

Hi-Tech Security Solutions
Hi-Tech Security Business Directory

Motion Control in Southern Africa
Motion Control Buyers’ Guide (MCBG)

South African Instrumentation & Control
South African Instrumentation & Control Buyers’ Guide (IBG)
Other
Terms & conditions of use, including privacy policy
PAIA Manual





 

         
    classic | mobile

Copyright © Technews Publishing (Pty) Ltd. All rights reserved.