Flow Measurement & Control


A guide to vortex flowmeters

June 2017 Flow Measurement & Control

The vortex shedding flowmeter emerged 25 to 30 years ago and has steadily grown in acceptance to become a major flow measurement technique. Its appeal is due, in part, to the fact that it has no moving parts, yet produces a frequency output that varies linearly with flowrate over a wide range of Reynold’s numbers. The vortex meter has a very simple construction, provides accuracy (1% or better) comparable to higher price and/or more maintenance intensive techniques, and works equally well on liquids and gases. It is driven primarily by the fluid and lends itself more readily than other linear flow devices to two-wire operation. Comparing the vortex shedding flowmeter to an orifice plate the former has higher accuracy and rangeability, does not require complex pressure impulse lines, is less sensitive to wear and, for volumetric flow measurement, does not require the need to compensate for fluid density.

General criteria for instrument selection

Instrumentation procurement should include the following criteria when selecting the best fit for the organisation’s requirements:

Price/performance

Meeting performance specifications at the lowest cost is important in any industry. Producers must keep operating costs low to survive. Although compliance with well-honed standards has placed leading vendors at near parity in baseline performance, vendors are constantly innovating to improve accuracy and reliability of their instruments. In this market, the highest priced products are not necessarily the best performing, so careful attention to required functionality and price can pay off. Technology advances make it more feasible to measure multiple variables with a single instrument, which can contribute further purchasing economies.

Warranties

An often overlooked criterion, warranty periods can play a large influence in total cost of ownership calculations. A slightly more expensive initial procurement cost can be significantly offset with longer warranty periods. Additionally, the longer warranty period instils a confidence in the instrument performance for a given time span.

Ease of implementation

Ease of implementation and operation affects both performance and cost of running operations. The less complicated it is to install, configure and use the equipment, the shorter the learning curve is. Ease of implementation includes mechanical design features that impact installation, as well as ease of configuration and calibration.

Maintainability

Maintenance is one of the most significant factors contributing to cost of operations. Contributing to reduced maintenance costs are advances in design, materials, and diagnostics. Proper selection of instrumentation is critical to the overall production and success of the plant. Instrumentation that needs continuous maintenance, such as calibration and repair, or replacement can cause production downtime, thus reducing plant yield. Conversely, instrumentation that requires little maintenance time will boost plant production, while reducing replacement and labour costs.

Flexibility

Flexibility is significant because of the rate at which the market changes, meaning organisations need to be able to obtain the maximum possible use from each sensor they purchase. Careful consideration of these options during the design phase can save thousands by

eliminating the need to purchase individual sensors for different variables and can improve operations by providing process engineers greater flexibility in deploying or repurposing sensors.

Scalability

Closely related to flexibility, organisations want to be sure that the systems they install today can grow with them as their businesses expand. This is primarily a consideration for the control system that is installed, as it must include an open architecture that will enable deployment of best of breed devices, but is also a function of the communications protocol used within the instrumentation.

Support

Availability of support is critical in industry, combined with technology advances that can result in savings of thousands of Rands, but can also add unnecessary costs if implemented without a clear understanding of the process needs of clients and the workings and benefits of latest technological advances. Helping organisations meet these requirements are several trends in sensor design and development, expanded functionality, user access and integration, and vendor support.

Vortex meter application suitability for steam measurement

Vortex flowmeters are well suited to clean liquids and gasses. This makes them ideal instruments in the measurement of steam flows (See Table 1).

Orifice plates can cost less than other solutions, which makes them very popular. Use of a differential pressure orifice plate requires consideration of pressure loss in the process and calibration of the plate. This kind of device often needs specific software and expertise for setup. In addition, orifice plates can be more susceptible to mechanical wear, resulting in inaccuracies in flow measurement due to increasing hole diameter. In addition, the vortex flowmeter is capable of measuring lower flow ranges.

Foxboro’s 84C vortex flowmeter already has the temperature RTD inserted into the thermal well of the flow chamber. Additionally, the mass flow calculator is integrated into the instrument’s electronics with the requisite density corrections and mass calculations. Measurement tolerances are approximately 0,50C and 1% of volumetric flow for liquids and gasses. This equates to a 1,4% accuracy for steam mass flow.

The operating ranges for the 84C (see Table 2) allow operation in most temperature and steam ranges for saturated steam.

For more information contact Gary Bantich, EOH, +27 (0)87 803 9767, [email protected], www.eoh-pas.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

New uncompromisingly simple flowmeter line for processes
Endress+Hauser South Africa Flow Measurement & Control
The demand for simplicity in commissioning, operation and maintenance in industrial process plants has increased significantly in recent years. The new Proline 10 range of flowmeters from Endress+Hauser meets this requirement without compromise, because simplicity is the top priority.

Read more...
Rotork joins Rockwell Automation’s Technology Partner Programme
Flow Measurement & Control
Rotork has entered into the Rockwell Automation Technology Partner Programme, marking a significant step in expanding the company’s presence within the industrial automation landscape.

Read more...
Loop signature 29: Averaging or surge level control
Editor's Choice Flow Measurement & Control
There are many processes where it is undesirable for the load to suddenly change quickly, for example in the paper industry. Examples of level control have involved reasonably fast tuning. An example of a level loop tuned this way and responding to a step change in setpoint is given.

Read more...
A reliable water supply: The make or break in building metros across South Africa
VEGA Controls SA Flow Measurement & Control
South Africa’s urban centres encounter substantial water supply challenges. Maintaining stable water infrastructure is essential for the health, economic vitality and well-being of communities.

Read more...
Uncompromising flow rate measurement
Burkert South Africa Flow Measurement & Control
Bürkert’s FLOWave is a hygienic and safe flow measurement solution with many benefits for pharmaceutical or food production processes.

Read more...
Electromagnetic flow measurement
Siemens South Africa Flow Measurement & Control
The SITRANS FM electromagnetic flowmeters from Siemens deliver high-precision volume measurement of electrically conductive liquid applications – from water, wastewater and irrigation to hygienic processes and even mining slurries with magnetic particles.

Read more...
ABB unveils next generation of electromagnetic flowmeters
ABB South Africa Flow Measurement & Control
ABB has launched its latest generation of electromagnetic flowmeters, bringing unmatched accuracy, connectivity and flexibility to industrial and utility applications.

Read more...
Precision measurement for ultra-pure water systems
Flow Measurement & Control
[Sponsored] Ultra-pure water (UPW) is essential in industries where even minor contaminants can impact product quality and process integrity. Anton Paar’s L-Cor Coriolis mass flowmeters provide a highly accurate and hygienic solution by directly measuring the mass of the liquid using the Coriolis effect, ensuring a high level of cleanliness.

Read more...
Inline process solutions for gold mining
Anton Paar Flow Measurement & Control
[Sponsored]The extraction and processing of gold ore requires precision and efficiency to maximise yield and minimise losses. Automation and continuous monitoring of critical process steps are essential to ensure optimal production. Anton Paar offers advanced inline measurement solutions which enable full automation and real-time monitoring of key steps in gold extraction and processing.

Read more...
Magnetic-inductive flow sensor
ifm - South Africa Flow Measurement & Control
The SMF magnetic-inductive flow sensor revolutionises liquid and creamy flow measurement. With IO-Link, it enables digital data transmission, eliminating blind spots in production.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved