Editor's Choice


Nick Denbow's European Report: Fashions in sensor technology

May 2017 Editor's Choice News

I confess it was 50 years ago when I started looking at new technology for sensors. Back then, colleagues and I updated the old WW2 mine detector, using really low frequency (i.e. 1 kHz) magnetic waves to discriminate between ferrous and non-ferrous items, and assess the size and range of the target by the signal phase measurement. Here the electronics used ‘modern’ operational amplifiers, on a ‘chip’.

The 1980s

Ten years on, in the ’80s, the technology coming into vogue was ultrasonics, replacing float systems to make liquid level switches, and then, still using analog electronics, the first Doppler ultrasonic flowmeter appeared. With the availability of digital microprocessor circuitry, timed pulses transmitted through the air down to the surface of a liquid led to non-contact liquid level measurement, and major success in the automation of sewage sump pumping systems. (The success lasted maybe 30 years, as when the mobile phone business created low cost microwave components, similar systems based on radar began to take over in this market.)

The next leap forwards in the mid-’80s was the time-of-flight ultrasonic flowmeter – actually achieved with discrete digital circuitry, which was faster than the available microprocessors. The technology was originally developed at Harwell, for measuring liquid sodium flows in nuclear reactors, but these flowmeters found major application in monitoring clean water flows, primarily in water distribution mains. Over the next 25 years the technique was picked up by commercial interests, and continually refined, introducing clamp-on sensor systems, and adapting the technique for gas flows as well. Even domestic gas meters were introduced using the same principle. Eventually the microprocessor speed became fast enough to achieve the flow measurement accuracy needed – using multiple sound paths – for the fiscal measurement of oil flows, which is now one of the major applications, along with similar gas flow measurement tasks.

Other sensors where I was not initially involved were in the fields of gas detection – where for flammable gases, Pellistors created a major business area – and fire detectors. It seems that UV and IR fire detection systems are still seeking the best approach. Possibly because of the awareness brought about by the Internet, the pace of change and the commercial opportunities, the large corporations are quick to acquire small spin-off companies from university or other research after any small success, because of what technology they may have discovered: they do this ‘just in case’, to protect their market position.

Current developments

The area I see as most important currently, and a fruitful area to flag up for research projects, is in any style of optical analytical measurement sensor. Specifically, the component that brought this into industrial instrumentation was the tuneable diode laser (TDL), developed prior to 2005 for the telecommunications industry, to transmit telephone conversations and data down fibre-optic cables. Around 2007 Yokogawa acquired a business from Dow Chemicals, which used TDL sensors for near-infrared absorption (NIR) measurements of a gas mixture, which gave the proportions of oxygen, carbon dioxide and monoxide, and water vapour. This allowed the unit to be used as a combustion analyser for industrial furnaces, boilers etc.

Over the last 10 years this area of technology has grown in importance, and in its capabilities. Spin-off companies have emerged from various universities, like Manchester and Glasgow. A significant task in these developments is the application of the solution to an industrial problem: it needs the two factors of solving both the technical design and the industrial application. Cascade Technologies was established in Glasgow in 2003, and their analysers were initially targeted at marine flue gas emissions monitoring. From 2013 they added a focus on pharmaceutical gaseous leak detection, and also the process industry, on ethylene plants. Their technology allows multiple gases to be measured simultaneously. The Cascade business has now been acquired by Emerson.

Another closely market-focused supplier of NIR analytical systems is TopNIR Systems of Aix en Provence, in France, actually a spin-off business from within BP. TopNIR use their systems to analyse hydrocarbons – both crude oil and processed products – to allow a refinery operator to know how to most profitably blend the available components into a final product, as well as to minimise any quality give-away in blending the different grades of gasoline and diesel. TopNIR quote the annual benefit to a typical refinery at $2 to $6 million, with an implied investment spend of up to $2 million!

Nick Denbow spent 30 years as a UK-based process instrumentation marketing manager, and then changed sides – becoming a freelance editor and starting Processingtalk.com. Avoiding retirement, he published the INSIDER automation newsletter for five years, and then acted as their European correspondent. He is now a freelance Automation and Control reporter and newsletter publisher, with a blog on www.nickdenbow.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

SAIMC Zambia
SAIMC SAIMC News
SAIMC Zambia marked its 21st anniversary with the annual SAIMC Banquet, held on 29 November 2025 at Mukwa Lodge in Kitwe, Zambia.

Read more...
Machine health monitoring with ifm
ifm - South Africa Editor's Choice IT in Manufacturing
With ifm’s machine health monitoring, early signs of wear can be detected and unexpected failures prevented. Combined with equipment preventive maintenance software, interventions can be scheduled proactively to avoid costly downtime.

Read more...
Powering Africa’s sustainable mining
VEGA Controls SA Editor's Choice Level Measurement & Control
At the 2026 Mining Indaba in Cape Town, one theme rises above all others, progress through precision. For VEGA, a global leader in process instrumentation, this mission aligns perfectly with its core purpose, which is turning measurement into meaningful progress.

Read more...
PCS Global delivers turnkey MCC installation in Botswana
PCS Global Editor's Choice PLCs, DCSs & Controllers
PCS Global is delivering a turnkey containerised MCC installation for a major copper mining operation in Northwest Botswana.

Read more...
SEW-EURODRIVE transforms drivetrain uptime
SEW-EURODRIVE Editor's Choice Motion Control & Drives
The DriveRadar IoT Suite from SEW-Eurodrive is an ideal solution for industrial condition monitoring. This powerful ecosystem of intelligent sensors, edge devices and cloud-based analytics ensures that customers have full visibility and control of their operations.

Read more...
PC-based control for flat wire motors for electric vehicles
Beckhoff Automation Editor's Choice Motion Control & Drives
Special machine manufacturer, ruhlamat Huarui Automation Technologies has unveiled the second generation of its mass production line for flexible stators with bar winding (pins). This enables an extremely short production cycle and line changeover times, supported by PC- and EtherCAT-based control technology from Beckhoff.

Read more...
Heavy impact, smart control
Axiom Hydraulics Editor's Choice Pneumatics & Hydraulics
Every now and then a project lands on your desk that’s equal parts heavy machinery and fine control - a tantalising mix for any engineer. A client approached Axiom Hydraulics with a project exactly like this.

Read more...
Pneumatics makes a technological leap with the proportional valve terminal
Festo South Africa Editor's Choice Motion Control & Drives
Festo continually makes bold technological leaps to keep pace with global advancements. Controlled Pneumatics is redefining the boundaries of compressed air technology to meet the demands of today’s most advanced applications.

Read more...
Driving fluid power forward
Editor's Choice News
The National Fluid Power Association is developing its latest Industrial Technology Roadmap for 2025, showing how hydraulics and pneumatics are changing to meet new industrial demands.

Read more...
World’s hottest engine
Editor's Choice Motion Control & Drives
Scientists have built the world’s smallest engine. It’s also the world’s hottest. It could provide an unparalleled understanding of the laws of thermodynamics on a small scale, and provide the foundation for a new, efficient way to compute how proteins fold.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved