IT in Manufacturing


Cyber security in utility ­communication networks

March 2016 IT in Manufacturing

Security concerns faced in the electrical substations of today stem from a variety of factors. The adoption of new technologies – such as transmission control protocol/Internet protocol (TCP/IP)-based technologies for both substation automation networks and wide area network (WAN) communications between substations – has opened these networks up to more cyber threats. A good cyber security policy, however, is a simple first step to maintaining the reliability and the safety of substation and grid operations.

Cyber security is often used to describe protection against online attacks, but a more holistic view of cyber security involves a collection of measures adopted to prevent unauthorised use, malicious use, denial of use, or modification of information, facts, data or resources. Cyber security not only refers to intentional attacks from outside the network, but also internal issues and unintentional modifications of information.

With both internal and external threat sources in mind, it is important to establish preventative processes for any issue that could lead to network downtime. These measures could include devices, configurations, internal security policies, and employee and contractor training. And since it’s not realistic to assume all threats can be prevented 100% of the time, recovery strategies after issues occur are also critical to protect network uptime.

Cyber security in utility communication networks

Historically, substation control networks were based on local connections and proprietary applications. Systems were designed for safety, reliability and ease of use, and security was not traditionally a concern of network managers or installers. But this approach is no longer valid.

Today’s communications networks are characterised by the use of:

• Commercial off-the-shelf technology.

• Ethernet and TCP/IP-based communications protocols.

• Open standards, IEC60870-5-104 and IEC61850.

• Integration of legacy industrial protocols (DNP3) and Modbus TCP.

• Remote connections (multiple devices and mobility).

• Interconnection with company IT systems.

• Use of public networks.

The complexity of power grids has increased over the years. As they have become interconnected with systems across countries, it has made failures and mistakes more likely – and their potential impact greater in scope and cost.

A thoughtful cyber security policy, combined with a well-designed network infrastructure, can help minimise or contain threats. Cyber security policies strive to meet three main objectives:

1. Confidentiality: preventing unauthorised access to information.

2. Integrity: preventing unauthorised modification or theft of information.

3. Availability: Preventing denial of service (DoS) and ensuring authorised access to information.

In IT networks, confidentiality is the main objective. However, in industrial networks, availability is the critical design parameter.

Analysis of threats

Most network security incidents are accidental instead of intentional. According to the Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) vulnerability analysis, authentication flaws were the most abundant vulnerability type identified in 2013. This liability is of particular concern because an attacker with a minimal skill level could potentially gain administrator level access to devices that are accessible over the Internet. Other common vul­nerabilities identified in the analysis include factory hard-coded credentials and weak authentication keys.

Unintentional threats, such as equipment failures and employee carelessness, and deliberate threats, like cyber hackers and viruses, have different types of consequences.

They impact information systems, network infrastructure management and power system assets differently. Due to the critical role the communications network plays in the operation and protection of the high voltage and medium voltage grids, a DoS attack may lead to service disruption and financial losses, as a result of repairs and equipment replacement.

Cyber security is an iterative process – not static. As surrounding conditions or threat sources change, systems and policies may need to be updated to address those changes.

For a better understanding of this process, interested readers can download the full Belden white paper at: http://www.instrumentation.co.za/J667.pdf





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Prefabricated data centres for an AI-focused future at the edge
Schneider Electric South Africa IT in Manufacturing
As AI technologies continue to advance, data centres are being pushed to the edge, reshaping their operations to meet daily demands. To meet the relentless demands of AI workloads at the edge, prefabricated data centre solutions offer a scalable, efficient and fast alternative to traditional builds.

Read more...
Quantum computing and its impact on data security: a double-edged sword for the digital age
IT in Manufacturing
Quantum computing is poised to redefine the boundaries of data security, offering groundbreaking solutions while threatening modern encryption’s foundations. For third-party IT providers, this duality presents both a challenge and an opportunity to lead organisations through one of the most significant technological transitions in decades.

Read more...
Next-generation road-legal race car.
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software has announced that Briggs Automotive Company (BAC) will move to the Siemens Xcelerator portfolio of industry software and use it to develop the next generation of its single-seater road-legal race car, Mono.

Read more...
Cybersecurity at a crossroads
IT in Manufacturing
here’s a growing unease in boardrooms, data centres and cabinet offices across South Africa. It’s not just about economic headwinds or political uncertainty, it’s about something quieter, more technical and yet just as dangerous - the rising tide of cyber threats.

Read more...
Enabling a sustainable industrial organisation
IT in Manufacturing
This article explains the top sustainability trends and key actions that you can leverage to become a more sustainable organisation.

Read more...
Navigating discrete manufacturing in South Africa through digitalisation
IT in Manufacturing
South Africa’s discrete manufacturing sector faces mounting pressure from global competition, fragmented supply chains and outdated infrastructure. In this complex environment, digitalisation is a critical lever for survival, resilience and growth.

Read more...
Africa’s pragmatic approach to AI and how data centres are enabling it
Schneider Electric South Africa IT in Manufacturing
In Africa, the current AI momentum is driven by a fundamental need, building a resilient digital infrastructure that addresses the real-world challenges of the continent’s communities.

Read more...
World first simulation of error-correctable quantum computers
IT in Manufacturing
Quantum computers still face a major hurdle on their pathway to practical use cases, their limited ability to correct the arising computational errors. In a world first, researchers from Chalmers University of Technology in Sweden have unveiled a method for simulating specific types of error-corrected quantum computations.

Read more...
Platform to accelerate supply chain decarbonisation
Schneider Electric South Africa IT in Manufacturing
Schneider Electric has launched Zeigo Hub by Schneider Electric, a powerful new digital platform designed to help organisations decarbonise their supply chains at scale.

Read more...
Future-ready data centres
IT in Manufacturing
The white paper ‘Future-Ready Data Centres’ by Black & Veatch outlines how integrating sustainable design principles not only helps meet ESG goals but also ensures reliability, operational efficiency and business continuity in the face of climate change and growing digital demand.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved