IT in Manufacturing


Cyber security in utility ­communication networks

March 2016 IT in Manufacturing

Security concerns faced in the electrical substations of today stem from a variety of factors. The adoption of new technologies – such as transmission control protocol/Internet protocol (TCP/IP)-based technologies for both substation automation networks and wide area network (WAN) communications between substations – has opened these networks up to more cyber threats. A good cyber security policy, however, is a simple first step to maintaining the reliability and the safety of substation and grid operations.

Cyber security is often used to describe protection against online attacks, but a more holistic view of cyber security involves a collection of measures adopted to prevent unauthorised use, malicious use, denial of use, or modification of information, facts, data or resources. Cyber security not only refers to intentional attacks from outside the network, but also internal issues and unintentional modifications of information.

With both internal and external threat sources in mind, it is important to establish preventative processes for any issue that could lead to network downtime. These measures could include devices, configurations, internal security policies, and employee and contractor training. And since it’s not realistic to assume all threats can be prevented 100% of the time, recovery strategies after issues occur are also critical to protect network uptime.

Cyber security in utility communication networks

Historically, substation control networks were based on local connections and proprietary applications. Systems were designed for safety, reliability and ease of use, and security was not traditionally a concern of network managers or installers. But this approach is no longer valid.

Today’s communications networks are characterised by the use of:

• Commercial off-the-shelf technology.

• Ethernet and TCP/IP-based communications protocols.

• Open standards, IEC60870-5-104 and IEC61850.

• Integration of legacy industrial protocols (DNP3) and Modbus TCP.

• Remote connections (multiple devices and mobility).

• Interconnection with company IT systems.

• Use of public networks.

The complexity of power grids has increased over the years. As they have become interconnected with systems across countries, it has made failures and mistakes more likely – and their potential impact greater in scope and cost.

A thoughtful cyber security policy, combined with a well-designed network infrastructure, can help minimise or contain threats. Cyber security policies strive to meet three main objectives:

1. Confidentiality: preventing unauthorised access to information.

2. Integrity: preventing unauthorised modification or theft of information.

3. Availability: Preventing denial of service (DoS) and ensuring authorised access to information.

In IT networks, confidentiality is the main objective. However, in industrial networks, availability is the critical design parameter.

Analysis of threats

Most network security incidents are accidental instead of intentional. According to the Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) vulnerability analysis, authentication flaws were the most abundant vulnerability type identified in 2013. This liability is of particular concern because an attacker with a minimal skill level could potentially gain administrator level access to devices that are accessible over the Internet. Other common vul­nerabilities identified in the analysis include factory hard-coded credentials and weak authentication keys.

Unintentional threats, such as equipment failures and employee carelessness, and deliberate threats, like cyber hackers and viruses, have different types of consequences.

They impact information systems, network infrastructure management and power system assets differently. Due to the critical role the communications network plays in the operation and protection of the high voltage and medium voltage grids, a DoS attack may lead to service disruption and financial losses, as a result of repairs and equipment replacement.

Cyber security is an iterative process – not static. As surrounding conditions or threat sources change, systems and policies may need to be updated to address those changes.

For a better understanding of this process, interested readers can download the full Belden white paper at: http://www.instrumentation.co.za/J667.pdf





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Looking into the future of machine vision
Omron Electronics IT in Manufacturing
Artificial intelligence (AI) is driving a significant transformation in all areas of industrial automation, and machine vision is no exception. Omron’s AI-powered machine vision systems seamlessly integrate state-of-the-art algorithms, enabling machines to analyse and interpret visual data meticulously.

Read more...
Driving digital transformation in the truck industry
Siemens South Africa IT in Manufacturing
Tatra Trucks, a leading truck manufacturer in Czechia, has adopted the Siemens Xcelerator portfolio of industry software including Teamcenter software for product lifecycle management and the Mendix low code platform to help increase production volume and strengthen its ability to manufacture vehicles that meet specific customer requirements.

Read more...
Opinion piece: Digital twins in manufacturing – design, optimise and expand
Schneider Electric South Africa IT in Manufacturing
Digital twin technology can help create better products, fast. It can also transform the work of product development. This strong statement from McKinsey reinforces how far digital twins have come in manufacturing.

Read more...
Asset tracking is key to driving operational excellence and sustainable growth
Schneider Electric South Africa IT in Manufacturing
Asset tracking plays a critical role in the success of industrial businesses. By effectively managing and monitoring assets, companies can optimise their operations, ensuring that resources are used efficiently. This leads to improved productivity and reduced costs.

Read more...
Siemens democratises AI-driven PCB design for small and medium electronics teams
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software is making its AI-enhanced electronic systems design technology more accessible to small and mid-sized businesses with PADS Pro Essentials software and Xpedition Standard software.

Read more...
Predicting and preventing cyber-attacks with AI and generative AI
IT in Manufacturing
The speed at which cyber threats are evolving is unprecedented. As a result, companies need to implement state-of-the-art technology to protect their data and systems.

Read more...
Real-world lessons in digital transformation
IT in Manufacturing
Synthesis has helped businesses across multiple industries with their digital transformation by solving their unique integration challenges.

Read more...
Enhancing cyber security for industrial drives
Siemens South Africa IT in Manufacturing
The growing connection between production networks and office networks as part of IT/OT integration and the utilisation of IoT have many benefits for industrial companies. At the same time, they also increase the risk of cyber threats. Siemens ensures that your know-how and plants are protected at all times.

Read more...
Immersion cooling systems for data centres
IT in Manufacturing
The demand for data centres in Africa is growing. The related need for increasing rack densities brings with it escalating cooling requirements.

Read more...
Transforming pulp and paper with automation and digitalisation
ABB South Africa IT in Manufacturing
The pulp and paper industry in South Africa is undergoing a significant transformation from traditional manual processes to embracing automation technologies. Automation in pulp and paper mills aims to improve various production stages, from raw material preparation to final product creation.

Read more...