Sensors & Transducers


Smart sensors reshaping the automation landscape

March 2015 Sensors & Transducers

The state of automation is rapidly changing. One of the main reasons for this changing landscape is the advent of smart devices. ARC Advisory Group defines smart devices as having:

• Embedded computing and storage.

• Wired and/or wireless communications to the outside world.

• Ability to interact with the outside world (e.g. queries, setting parameters, interaction with other devices).

• Ability to perform autonomous actions such as control.

• Some degree of descriptive or predictive analytics capabilities.

The various types of smart devices include sensors, mobile devices (such as tablets and smartphones), or even skin-like devices like smart cement. In this ARC report, we’ll focus on smart sensors, which, in the automation context, generally refer to smart field devices with sensing (and often additional) capabilities.

Smart sensors add value for users

There are many examples of smart sensors that add value to users of automation technology. The smart gas chromatograph, for example, has a built-in ‘software assistant’ that guides even less experienced personnel through most installation, operation, and maintenance procedures.

Many conventional sensors now also have additional ‘smart’ features such as pressure sensors that detect electrical loop issues, temperature sensors that can detect thermocouple degradation and radar level gauges that include self-calibration capabilities. Video cameras now can have onboard video analytics for applications such as intrusion detection. Vibration sensors can perform fast Fourier transform (FFT) of the data to compute the ‘health’ of the equipment by performing analysis of the various frequencies of the vibrations right on the sensor. Smart sensors can be attached to the electrical line of industrial electrical motors to compute power factors (i.e., the efficiency of converting electrical energy to mechanical energy) and the probability of failure for key failure modes – all from analysis performed right on the sensor.

Smart sensors have some unique capabilities

Smart sensors represent a natural technology evolution from simple, equipment-mounted mechanical indicating sensors; to ‘dumb’ pneumatic and analog electronic sensors capable of transmitting raw measurements to another device for ‘massaging’ and transforming: to today’s microprocessor-enabled smart field devices with on-board processing capabilities and often full, bidirectional digital communications.

Today’s smart sensors can generate 20 to 50 times more readings beyond the primary value (PV). Some of these secondary values (SVs) are associated with statistics such as standard deviation of the PV, mean of the PV and maximum and minimum PV values. Other readings are associated with sensor health. These include sensor drift, sensor degradation and calibration verification.

Rather than sending raw, unprocessed data, today’s smart sensors also produce more refined readings. For example, an ultrasonic corrosion detection tool that sends wall thickness, rather than the raw ultrasonic transducer (UT) waveforms. Another major complication is that business rules are now stored in the device rather in a centralised system. This allows the smart device to perform autonomous actions based on those business rules (i.e., turn the pump off if the tank level reaches a certain level). As devices get smarter, they might not even transmit the raw data; just the results of the analytics performed on those data. For example, a hyperspectral camera might transmit gas levels rather than just the video images, which would require further analysis.

All this means that smart devices are uniquely qualified to be key enablers for the industrial Internet of things (IIoT). When you consider the key elements of the IIoT – sensors, networks, big data, analytics and visualisation – smart sensors contribute to all these areas.

Distributed acoustic sensing provides a good example. Here, a fibber cable is inserted into a producing oil or gas well and on-board processing transforms light pulses into a measure of acoustic energy at specific points about every metre along the length of the cable. These measurements are then used to optimise production by improving visibility into the reservoir behaviours. Since these systems can acquire over a terabyte of data per day, this new sensor is bundled into a smart sensor package that provides methods for networking, handling big data, computing analytics and visualising these data.

Smart sensors present unique challenges

The introduction of these smart field devices poses some significant challenges for technology users.

With so much intelligence being pushed to the field device, end user companies need to distribute, verify and audit those rules in a distributed environment. While reasonably straightforward to do in a centralised system, managing those business rules in a non-centralised world is far more challenging.

The networks for gathering and backhauling readings must also be designed to accommodate all the secondary readings being generated. The classical ISA 95 security model in which all the data are funnelled through the DCS and process control network does not scale easily. Instead, an enterprise approach is needed to avoid overwhelming the process control system with this tidal wave of new non-control data.

Another key issue is that while the smart devices now generate and communicate sensor health readings, an enterprise device management solution is needed that can collect and analyse this sensor health data. Such systems could significantly improve the reliability of these smart sensors.

Finally, systems need to be designed to collect, process and transform all this additional secondary, non-control data into actionable information to help improve the performance of the plants and associated assets. Traditional systems greatly underutilise such data.

For more information contact Paul Miller, ARC Advisory Group, +1 781 471 1126, [email protected], www.arcweb.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Miniature inductive sensors
ifm - South Africa Sensors & Transducers
The inductive IY/IZ type sensors from ifm are used in various industrial areas where space is limited.

Read more...
The expanding role of 3D cameras in industrial quality control
TANDM Technologies Sensors & Transducers
Across factory floors, warehouses, mines and research centres worldwide, computer vision paired with 3D camera technology is revolutionising quality control.

Read more...
PDS implementation on mines
Sensors & Transducers
Level 9 vehicle intervention for collision avoidance has been mandatory on South African mines since 2022, yet the effective roll-out of proximity detection systems remains slower than expected. This is not due to the technical limitations of integration but to operational readiness on site.

Read more...
Monitoring analogue process values
ifm - South Africa Sensors & Transducers
Everywhere in industry, electronic sensors are used to detect process values such as temperature, pressure or flow. Process value monitoring often takes place directly in the sensor.

Read more...
Protecting buildings’ embodied carbon with retrofitted systems
Schneider Electric South Africa Sensors & Transducers
The World Economic Forum has said that around 80% of the buildings in existence will still be around in 2050; it is therefore essential that in order to combat climate change we retrofit them for energy efficiency.

Read more...
Listening for damage to wind turbines
Sensors & Transducers
The Fraunhofer Institute for Integrated Circuits, working in concert with the Fraunhofer Institute for Wind Energy Systems, has developed a solution that can be used to identify cracks and breakage inside wind turbine blades remotely at an early stage.

Read more...
Enhancing gold leaching efficiency
Endress+Hauser South Africa Sensors & Transducers
Endress+Hauser offers a range of advanced technologies designed to enhance the stability and accuracy of pH and dissolved oxygen measurements on gold processing plants.

Read more...
Powering safer mining with PDS
Sensors & Transducers
With the mining industry under increasing pressure to prioritise safety without compromising productivity, Booyco Electronics is pushing the boundaries of Proximity Detection System and Collision Avoidance System technology across both underground and surface operations.

Read more...
The car of the future listens
Sensors & Transducers
The perception of external sounds in cars has been lacking, even in automated driving. That is why Fraunhofer IDMT-HSA is researching the integration of acoustic sensor technology in its KI4BoardNet project with the Hearing Car.

Read more...
Telco Sensors for blocked or empty chute detection
Sensors & Transducers
In most industries there is a problem with photoelectric sensors as highly contaminated environments make it difficult to operate and sense reliably. Telco Sensors overcomes this through its powerful high-performance infrared sensors that ensure penetration of harsh pollution to guarantee reliable detection.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved